Lanthanum doped zirconium oxide (LaxZr1xO2δ) films, with La contents, up to x=0.35, were studied. Films were annealed at 900°C to crystallize them into phases with higher κ-values. Increasing the La content suppressed the monoclinic phase and stabilized the tetragonal or cubic phase. The highest dielectric constant was obtained for a lightly doped film with a La content of x=0.09, for which a κ-value of 40 was obtained. This was accompanied by a significant dielectric relaxation, following a single Curie–von Schweidler power-law dependency with frequency, changing to a mixed Curie–von Schweidler and Kohlrausch–Williams–Watts relationships after annealing. The dielectric relaxation was most severe for lightly doped films, which had the highest κ-values. The dielectric relaxation appears to be related to the size of crystal grains formed during annealing, which was dependent on the doping level.

1.
N.
Lu
,
H. -J.
Li
,
J. J.
Peterson
, and
D. L.
Kwong
,
Appl. Phys. Lett.
90
,
082911
(
2007
).
2.
T. S.
Boscke
,
S.
Govindarajan
,
C.
Fachmann
,
J.
Heitmann
,
A.
Avellan
,
U.
Schroder
,
P. D.
Kirsch
,
C.
Krug
,
P. Y.
Hung
,
S. C.
Song
,
B. S.
Ju
,
J.
Price
,
G.
Pant
,
B. E.
Gnade
,
W.
Krautschneider
,
B. -H.
Lee
, and
R.
Jammy
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
255
.
3.
P.
Darmawan
,
P. S.
Lee
,
Y.
Setiawan
,
J.
Ma
, and
T.
Oscipowicz
,
Appl. Phys. Lett.
91
,
092903
(
2007
).
4.
J. M. J.
Lopes
,
U.
Littmark
,
M.
Roeckerath
,
St.
Lenk
,
J.
Schubert
,
S.
Mantl
, and
A.
Besmehn
,
J. Appl. Phys.
101
,
104109
(
2007
).
5.
D.
Vanderbilt
,
X.
Zhao
, and
D.
Ceresoli
,
Thin Solid Films
486
,
125
(
2005
).
6.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
233106
(
2002
).
7.
D.
Fischer
and
A.
Kersch
,
Appl. Phys. Lett.
92
,
012908
(
2008
).
8.
S.
Govindarajan
,
T. S.
Boscke
,
P.
Sivasubramani
,
P. D.
Kirsch
,
B. H.
Lee
,
H. -H.
Tseng
,
R.
Jammy
,
U.
Schroder
,
S.
Ramanathan
, and
B. E.
Gnade
,
Appl. Phys. Lett.
91
,
062906
(
2007
).
9.
P. R.
Chalker
,
M.
Werner
,
S.
Romani
,
R. J.
Potter
,
K.
Black
,
H. C.
Aspinall
,
A. C.
Jones
,
C. Z.
Zhao
,
S.
Taylor
, and
P. N.
Heys
,
Appl. Phys. Lett.
93
,
182911
(
2008
).
10.
J. M.
Gaskell
,
A. C.
Jones
,
H. C.
Aspinall
,
S.
Taylor
,
P.
Taechakumput
,
P. R.
Chalker
,
P. N.
Heys
, and
R.
Odedra
,
Appl. Phys. Lett.
91
,
112912
(
2007
).
11.
J. M.
Gaskell
,
A. C.
Jones
,
P. R.
Chalker
,
M.
Werner
,
H. C.
Aspinall
,
S.
Taylor
,
P.
Taechakumput
, and
P. N.
Heys
,
Chem. Vap. Deposition
13
,
684
(
2007
).
12.
T. S.
Boscke
,
S.
Govindarajan
,
P. D.
Kirsch
,
P. Y.
Hung
,
C.
Krug
,
B. H.
Lee
,
J.
Heitmann
,
U.
Schroder
,
G.
Pant
,
B. E.
Gnade
, and
W. H.
Krautschneider
,
Appl. Phys. Lett.
91
,
072902
(
2007
).
13.
International Technology Roadmap for Semiconductors, Front end processes,
2007
edition, http://www.itrs.net/.
14.
A. K.
Jonscher
,
Universal Relaxation Law
(
Chelsea Dielectric
,
London
,
1996
).
15.
A. K.
Jonscher
,
Dielectric Relaxation in Solids
(
Chelsea Dielectric
,
London
,
1983
).
16.
R. J.
Potter
,
P. R.
Chalker
,
T. D.
Manning
,
H. C.
Aspinall
,
Y. F.
Loo
,
A. C.
Jones
,
L. M.
Smith
,
G. W.
Critchlow
, and
M.
Schumacher
,
Chem. Vap. Deposition
11
,
159
(
2005
).
17.
P.
Bailey
,
T. C. Q.
Noakes
, and
D. P.
Woodruff
,
Surf. Sci.
426
,
358
(
1999
).
18.
ICDS Card Nos. 65-1022, 50-1089, and 65-461.
19.
ICDS Card Nos. 86-338 and 86-337.
20.
H.
Watanabe
,
N.
Ikarashi
, and
F.
Ito
,
Appl. Phys. Lett.
83
,
3546
(
2003
).
21.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley Classic Library
,
New Jersey
,
2003
).
22.
V.
Venkatesan
,
K.
Das
,
J. A.
von Vindheim
, and
M. W.
Geis
,
Appl. Phys. Lett.
63
,
1065
(
1993
).
23.
L.
Zhijiong
and
T. P.
Ma
,
IEEE Electron Device Lett.
25
,
655
(
2004
).
24.
K. J.
Yang
and
C.
Hu
,
IEEE Trans. Electron Devices
46
,
1500
(
1999
).
25.
C. -H.
Choi
,
Y.
Wu
,
J. -S.
Goo
,
Z.
Yu
, and
R. W.
Dutton
,
IEEE Trans. Electron Devices
47
,
183
(
2000
).
26.
C. Z.
Zhao
,
S.
Taylor
,
M.
Werner
,
P. R.
Chalker
,
R. T.
Murray
,
J. M.
Gaskell
, and
A. C.
Jones
,
15th Workshop on Dielectrics in Microelectronics
, Berlin, Germany, 23–25 June
2008
(unpublished).
27.
J. L.
Zhang
,
J. S.
Yuan
,
Y.
Ma
, and
A. S.
Oates
,
Solid-State Electron.
45
,
373
(
2001
).
28.
O.
Bierwagen
,
L.
Geelhaar
,
X.
Gay
,
M.
Piešinš
,
H.
Riechert
,
B.
Jobst
, and
A.
Rucki
,
Appl. Phys. Lett.
90
,
232901
(
2007
).
29.
K. S. K.
Kwa
,
S.
Chattopadhyay
,
N. D.
Jankovic
,
S. H.
Olsen
,
L. S.
Driscoll
, and
A. G.
O’Neill
,
Semicond. Sci. Technol.
18
,
82
(
2003
).
30.
A. A.
Bokov
,
M. M.
Kumar
,
Z.
Xu
, and
Z. -G.
Ye
,
Phys. Rev. B
64
,
224101
(
2001
).
31.
A. A.
Bokov
and
Z. -G.
Ye
,
Phys. Rev. B
74
,
132102
(
2006
).
32.
R.
Waser
and
M.
Klee
,
Integr. Ferroelectr.
2
,
257
(
1992
).
33.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
34.
S. R.
Wolters
and
J. J.
Van Der Schoot
,
J. Appl. Phys.
58
,
831
(
1985
).
35.
L. A.
Dissado
and
R. M.
Hill
,
Nature (London)
279
,
685
(
1979
).
36.
H.
Reisinger
,
G.
Steinlesberger
,
S.
Jakschik
,
M.
Gutsche
,
T.
Hecht
,
M.
Leonhard
,
U.
Schroder
,
H.
Seidl
, and
D.
Schumann
,
Tech. Dig. - Int. Electron Devices Meet.
2001
,
267
.
37.
C. T.
Dervos
,
E.
Thirios
,
J.
Novacovich
,
P.
Vassiliou
, and
P.
Skafidas
,
Mater. Lett.
58
,
1502
(
2004
).
38.
H.
Choosuwan
,
R.
Guo
,
A. S.
Bhalla
, and
U.
Balachandran
,
J. Appl. Phys.
93
,
2876
(
2003
).
39.
H.
Yu
,
H.
Liu
,
H.
Hao
,
L.
Guo
,
C.
Jin
,
Z.
Yu
, and
M.
Cao
,
Appl. Phys. Lett.
91
,
222911
(
2007
).
40.
N.
Sivakumar
,
A.
Narayanasamy
,
C. N.
Chinnasamy
, and
B.
Jeyadevan
,
J. Phys.: Condens. Matter
19
,
386201
(
2007
).
41.
C. Z.
Zhao
,
J. F.
Zhang
,
M. B.
Zahid
,
B.
Govoreanu
,
G.
Groeseneken
, and
S.
De Gendt
,
J. Appl. Phys.
100
,
093716
(
2006
).
42.
J. F.
Zhang
,
C. Z.
Zhao
,
M. B.
Zahid
,
G.
Groeseneken
,
R.
Degraeve
, and
S.
De Gendt
,
IEEE Electron Device Lett.
27
,
817
(
2006
).
You do not currently have access to this content.