A numerical method is presented to predict the effect of microstructure on the local polarization switching of bulk ferroelectric ceramics. The model shows that a built-in electromechanical field develops in a ferroelectric material as a result of the spatial coupling of the grains and the direct physical coupling between the thermomechanical and electromechanical properties of a bulk ceramic material. The built-in fields that result from the thermomechanically induced grain-grain electromechanical interactions result in the appearance of four microstructural switching mechanisms: (1) simple switching, where the c-axes of ferroelectric domains will align with the direction of the applied macroscopic electric field by starting from the core of each grain; (2) grain boundary induced switching, where the domain’s switching response will initiate at grain corners and boundaries as a result of the polarization and stress that is locally generated from the strong anisotropy of the dielectric permittivity and the local piezoelectric contributions to polarization from the surrounding material; (3) negative poling, where abutting ferroelectric domains of opposite polarity actively oppose domain switching by increasing their degree of tetragonality by interacting with the surrounding domains that have already switched to align with the applied electrostatic field. Finally, (4) domain reswitching mechanism is observed at very large applied electric fields, and is characterized by the appearance of polarization domain reversals events in the direction of their originally unswitched state. This mechanism is a consequence of the competition between the macroscopic applied electric field, and the induced electric field that results from the neighboring domains (or grains) interactions. The model shows that these built-in electromechanical fields and mesoscale mechanisms contribute to the asymmetry of the macroscopic hysteretic behavior in poled samples. Furthermore, below a material-dependent operating temperature, the predicted built-in electric fields can potentially drive the aging and electrical fatigue of the system to further skew the shape of the hysteresis loops.

1.
T. S.
Key
and
K. J.
Bowman
,
The 15th International Conference on the Textures of Materials
,
2008
(unpublished).
2.
R. E.
García
,
W. C.
Carter
, and
S. A.
Langer
,
J. Am. Ceram. Soc.
88
,
742
(
2005
).
3.
R. E.
García
,
W. C.
Carter
, and
S. A.
Langer
,
J. Am. Ceram. Soc.
88
,
750
(
2005
).
4.
R. E.
García
,
B. D.
Huey
, and
J. E.
Blendell
,
J. Appl. Phys.
100
,
064105
(
2006
).
5.
E. K. H.
Salje
,
Phase Transitions in Ferroelastics and Co-Elastic Crystals
(
Cambridge University Press
,
Cambridge, UK
,
1990
).
6.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Pergamon
,
Oxford, UK
,
1980
).
7.
A. F.
Devonshire
,
Philos. Mag.
3
,
1010
(
1954
).
8.
F.
Jona
and
G.
Shirane
,
Ferroelectric Crystals
(
Dover
,
New York, USA
,
1993
).
9.
B.
Jaffe
and
W.
Cook
,
Piezoelectric Ceramics
(
Academic
,
London
,
1971
).
10.
R. D.
James
and
K. F.
Hane
,
Acta Mater.
48
,
197
(
2000
).
11.
Y.
Wang
and
A. G.
Khachaturyan
,
Acta Mater.
45
,
759
(
1997
).
12.
A.
Artemev
,
Y.
Jin
, and
A. G.
Khachaturyan
,
Acta Mater.
49
,
197
(
2001
).
13.
Y. C.
Shiu
and
K.
Bhattacharya
,
Philos. Mag. B
81
,
2021
(
2001
).
14.
J.
Wang
,
Y.
Li
,
L.-Q.
Chen
, and
T.-Y.
Zhang
,
Acta Mater.
53
,
2495
(
2005
).
15.
N. A.
Pertsev
,
J. Appl. Phys.
84
,
1524
(
1995
).
16.
S.
Hwang
,
J. E.
Huber
,
R. E.
McMeeking
, and
N. A.
Fleck
,
J. Appl. Phys.
84
,
1530
(
1998
).
17.
W.
Kreher
and
J.
Rodel
, in
Applications of Ferroelectrics, 1998, ISAF 98, Proceedings of the 11th IEEE International Symposium on Ferroelectrics
, edited by
E.
Colla
,
D.
Damjanovic
, and
N.
Setter
(
Technical University Dresden
,
Germany
,
1956
), pp.
455
458
.
18.
A. G.
Zembil’gotov
,
N. A.
Pertsev
, and
R.
Wazer
,
Phys. Solid State
40
,
2002
(
1998
).
19.
A. N.
Soukhojak
and
Y.-M.
Chiang
,
J. Appl. Phys.
88
,
6902
(
2000
).
20.
Y.
Huo
and
Q.
Jiang
,
Smart Mater. Struct.
6
,
441
(
1997
).
21.
X.
Chen
,
D.-N.
Fang
, and
K.-C.
Hwang
,
Smart Mater. Struct.
6
,
145
(
1997
).
22.
S.-J.
Kim
,
Smart Mater. Struct.
7
,
572
(
1998
).
23.
H.
Kessler
and
H.
Balke
J. Mech. Phys. Solids
49
,
953
(
2001
).
24.
E. L.
Rumyantsev
,
V. Ya.
Shur
, and
S. D.
Makarov
,
Phys. Solid State
37
,
917
(
1995
).
25.
N. A.
Pertsev
,
A. G.
Zemilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
26.
S. M.
Allen
and
J. W.
Cahn
,
Acta Metall.
27
,
1085
(
1979
).
27.
R. E.
García
,
C. M.
Bishop
, and
W. C.
Carter
,
Acta Mater.
52
,
11
(
2004
).
28.
J. F.
Nye
,
Physical Properties of Crystals
(
Oxford University Press
,
London
,
1998
).
29.
C. B.
Barber
,
D. P.
Dobkin
, and
H. T.
Huhdanpaa
,
ACM Trans. Math. Softw.
22
,
469
(
1996
).
30.
O.
Barndorff-Nielsen
,
W. S.
Kendall
, and
M. N. M.
Lieshout
,
Stochastic Geometry: Likelihood and Computation
(
Chapman and Hall
,
Boca Raton, FL
,
1996
).
31.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
(
Pergamon
,
Cambridge, U.K.
,
1988
).
32.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1980
).
33.
W. C.
Carter
,
S. A.
Langer
, and
E. R.
Fuller
,
The OOF Manual:Version 1.0
.,
National Institute of Standards and Technology
, 100 Bureau Drive, Stop 8910, Gaithersburg MD, USA, nistir 6256 edition,
1998
.
34.
S. A.
Langer
,
W. C.
Carter
, and
E. R.
Fuller
,
OOF: Analysis of Real Material Microstructures
,
1999
. http://www.ctcms.nist.gov/oof/.
35.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vettering
, and
B.
Falnnery
,
Numerical Recipes in C
(
Cambridge University Press
,
New York
,
1997
).
36.
J.
Yin
and
W.
Cao
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
285
(
2000
).
You do not currently have access to this content.