The concept of a nanowire solar cell with photon-harvesting shells is presented. In this architecture, organic molecules which absorb strongly in the near infrared where silicon absorbs weakly are coupled to silicon nanowires (SiNWs). This enables an array of 7-μm-long nanowires with a diameter of 50 nm to absorb over 85% of the photons above the bandgap of silicon. The organic molecules are bonded to the surface of the SiNWs forming a thin shell. They absorb the low-energy photons and subsequently transfer the energy to the SiNWs via Förster resonant energy transfer, creating free electrons and holes within the SiNWs. The carriers are then separated at a radial p-n junction in a nanowire and extracted at the respective electrodes. The shortness of the nanowires is expected to lower the dark current due to the decrease in p-n junction surface area, which scales linearly with wire length. The theoretical power conversion efficiency is 15%. To demonstrate this concept, we measure a 60% increase in photocurrent from a planar silicon-on-insulator diode when a 5 nm layer of poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene is applied to the surface of the silicon. This increase is in excellent agreement with theoretical predictions.

2.
A. M.
Morales
and
C. M.
Lieber
,
Science
279
,
208
(
1998
).
3.
E. C.
Garnett
and
P.
Yang
,
J. Am. Chem. Soc.
130
,
9224
(
2008
).
4.
B. M.
Kayes
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Appl. Phys.
97
,
114302
(
2005
).
5.
Y.
Zhang
,
L.
Wang
, and
A.
Mascarenhas
,
Nano Lett.
7
,
1264
(
2007
).
6.
L.
Hu
and
G.
Chen
,
Nano Lett.
7
,
3249
(
2007
).
7.
J.
Zhu
,
Z.
Yu
,
G. F.
Burkhard
,
C. M.
Hsu
,
S. T.
Connor
,
Y.
Xu
,
Q.
Wang
,
M. D.
McGehee
,
S.
Fan
, and
Y.
Cui
,
Nano Lett.
9
,
279
(
2009
).
8.
B. Z.
Tian
,
X. L.
Zheng
,
T. J.
Kempa
,
Y.
Fang
,
N. F.
Yu
,
G.
Yu
,
J.
Huang
, and
C. M.
Lieber
,
Nature (London)
449
,
885
(
2007
).
9.
T. H.
Stelzner
,
M.
Pietsch
,
G.
Andra
,
F.
Falk
,
E.
Ose
, and
S.
Christiansen
,
Nanotechnology
19
,
295203
(
2008
).
10.
L.
Tsakalakos
,
J.
Balch
,
J.
Fronheiser
,
B. A.
Korevaar
,
O.
Sulima
, and
J.
Rand
,
Appl. Phys. Lett.
91
,
233117
(
2007
).
11.
A. P.
Goodey
,
S. M.
Eichfeld
,
K.
Lew
,
J. M.
Redwing
, and
T. E.
Mallouk
,
J. Am. Chem. Soc.
129
,
12344
(
2007
).
12.
J. R.
Maiolo
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
M. D.
Kelzenberg
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
129
,
12346
(
2007
).
13.
T.
Forster
,
Discuss. Faraday Soc.
27
,
7
(
1959
).
14.
B.
O'Regan
and
M.
Gratzel
,
Nature (London)
353
,
737
(
1991
).
15.
M.
Law
,
L. E.
Greene
,
A.
Radenovic
,
T.
Kuykendall
,
J.
Liphardt
, and
P.
Yang
,
J. Phys. Chem. B
110
,
22652
(
2006
).
16.
L. C.
Chen
,
L. S.
Roman
,
D. M.
Johansson
,
M.
Svensson
,
M. R.
Andersson
,
R. A. J.
Janssen
, and
O.
Inganas
,
Adv. Mater. (Weinheim, Ger.)
12
,
1110
(
2000
).
17.
S. R.
Scully
,
P. B.
Armstrong
,
C.
Edder
,
J. M. J.
Frechet
, and
M. D.
McGehee
,
Adv. Mater. (Weinheim, Ger.)
19
,
2961
(
2007
).
18.
H.
Kuhn
,
J. Chem. Phys.
53
,
101
(
1970
).
19.
S. R.
Scully
and
M. D.
McGehee
,
J. Appl. Phys.
100
,
034907
(
2006
).
20.
D. E.
Markov
and
P. W. M.
Blom
,
Appl. Phys. Lett.
87
,
233511
(
2005
).
21.
D. E.
Markov
and
P. W. M.
Blom
,
Phys. Rev. B
72
,
161401
(
2005
).
22.
J.
Hill
,
S. Y.
Heriot
,
O.
Worsfold
,
T. H.
Richardson
,
A. M.
Fox
, and
D. D. C.
Bradley
,
Phys. Rev. B
69
,
041303
(
2004
).
23.
T.
Del Cano
,
M. L.
Rodriguez-Mendez
,
R.
Aroca
, and
J. A.
De Saja
,
Mater. Sci. Eng., C
22
,
161
(
2002
).
24.
K.
Ray
,
H.
Nakahara
,
A.
Sakamoto
, and
M.
Tasumi
,
Chem. Phys. Lett.
342
,
58
(
2001
).
25.
P. O.
Anikeeva
,
C. F.
Madigan
,
S. A.
Coe-Sullivan
,
J. S.
Steckel
,
M. G.
Bawendi
, and
V.
Bulovic
,
Chem. Phys. Lett.
424
,
120
(
2006
).
26.
V.
Gowrishankar
,
S. R.
Scully
,
A. T.
Chan
,
M. D.
McGehee
,
Q.
Wang
, and
H. M.
Branz
,
J. Appl. Phys.
103
,
064511
(
2008
).
27.
CA is the acceptor density which is also used in the calculation of Ro, since Ro depends on the density of the acceptor, which in the case of silicon is 5.22×1022cm3.
28.
A.
Ulman
,
J. Am. Chem. Soc.
96
,
1533
(
1996
).
29.
J. M.
Buriak
,
J. Am. Chem. Soc.
102
,
1271
(
2002
).
30.
H.
Haick
,
P. T.
Hurley
,
A. L.
Hochbaum
,
P.
Yang
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
128
,
8990
(
2006
).
31.
J. E.
Green
,
S. J.
Wong
, and
J. R.
Heath
,
J. Phys. Chem. C
112
,
5185
(
2008
).
32.
B.
Hoex
,
J.
Schmidt
,
R.
Bock
,
P. P.
Altermatt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
91
,
112107
(
2007
).
33.
The oxide thickness was measured using variable angle spectroscopic ellipsometry with a white light source. The MEHPPV thin film was spun cast from a chlorobenzene solution at 2000 rpm for 45 s in a nitrogen environment to prevent photo-oxidation. We excited the samples using a Spectra-Physics argon ion laser at 514 nm in a nitrogen environment to avoid photo-oxidation. PL from the samples was measured using a SpectraPro 500i triple grating monochromator and a semiconductor-cooled charge coupled device (CCD 128HB, Acton Research).
34.
C.
Kelting
,
U.
Weiler
,
T.
Mayer
,
W.
Jaegermann
,
S.
Makarov
,
D.
Wohrle
,
O.
Abdallah
,
M.
Kunst
, and
D.
Schlettwein
,
Org. Electron.
7
,
363
(
2006
).
35.
T.
Mayer
,
U.
Weiler
,
E.
Mankel
,
W.
Jaegermann
,
C.
Kelting
,
D.
Schlettwein
,
N.
Baziakina
, and
D.
Wohrle
,
Renewable Energy
33
,
262
(
2007
).
36.
L. A. A.
Pettersson
,
L. S.
Roman
, and
O.
Inganas
,
J. Appl. Phys.
86
,
487
(
1999
).
37.
Handbook of Optical Constants of Solids
, edited by
E. D.
Palik
(
Academic
,
New York
,
1976
).
38.
M.
Tammer
and
A. P.
Monkman
,
Adv. Mater. (Weinheim, Ger.)
14
,
210
(
2002
).
39.
Care was taken to ensure that the measurements were made in the same location on the diode. Monochromatic excitation with wavelength from 400 nm to 1μm was provided by a Fianium supercontinuum fiber laser sent through a monochromator. The excitation was chopped and fed into a preamplifier and read out on a lock-in amplifier (Stanford Research Systems SR810 DSP). The beam was focused through a Mitutoyo 50× objective to a spot size of 20μm in diameter although the capabilities exist to reduce the diameter to the submicron level. The excitation power at 510 nm, the absorption peak of MEHPPV, was set at 100mW/cm2, the equivalent of one sun. The excitation spectrum was measured by a silicon photodiode prior to each measurement to ensure accurate normalization for each photocurrent action spectrum taken.
40.
C.
Reichardt
,
Solvents and Solvent Effects in Organic Chemistry
, 2nd ed. (
VCH Publishers
,
New York
,
1988
).
41.
K. E.
Plass
,
M. A.
Filler
,
J. M.
Spurgeon
,
B. M.
Kayes
,
S.
Maldonado
,
B. S.
Brunschwig
,
H. A.
Atwater
, and
N. S.
Lewis
,
Adv. Mater. (Weinheim, Ger.)
21
,
325
(
2009
).
You do not currently have access to this content.