The dielectric and structural properties of LaAlO3 make it an attractive epitaxial gate oxide for nanometer-scale field effect transistors. However, the growth of epitaxial LaAlO3 directly on Si has not been possible to date. In order to achieve LaAlO3 epitaxy, we use a SrTiO3 template layer whose thickness minimizes elastic strain and atomic-level buckling at the interface. We find that LaAlO3 grown on this template layer is crystalline and initially strained, but relaxes to its bulk lattice constant within 7 unit cells. Cross-sectional transmission electron microscopy and inelastic electron tunneling spectroscopy studies of the LaAlO3/SrTiO3/Si structure show no evidence of an amorphous SiO2 layer. Capacitance-voltage measurements on thin films of epitaxial LaAlO3/SrTiO3/Si with LaAlO3 thicknesses between 13 and 110 nm show a dielectric constant for the LaAlO3 layer of 24, the same value as for the bulk. After a post-deposition low temperature anneal, these oxide heterostructures show no Fermi level pinning and an interface state density of 8×1010cm2eV1.

1.
International Technology Roadmap for Semiconductors: Semicond. Ind. Assoc.,
2005
.
2.
Y. -C.
Yeo
,
T. -J.
King
, and
C.
Hu
,
IEEE Trans. Electron Devices
50
,
1027
(
2003
).
3.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
4.
S. -G.
Lim
,
S.
Kriventsov
,
T. N.
Jackson
,
J. H.
Haeni
,
D. G.
Schlom
,
A. M.
Balbashov
,
R.
Uecker
,
P.
Reiche
,
J. L.
Freeouf
, and
G.
Lucovsky
,
J. Appl. Phys.
91
,
4500
(
2002
).
5.
V. V.
Afanas’ev
,
A.
Stesmans
,
C.
Zhao
,
M.
Caymax
,
T.
Heeg
,
J.
Schubert
,
Y.
Jia
,
D. G.
Schlom
, and
G.
Lucovsky
,
Appl. Phys. Lett.
85
,
5917
(
2004
).
6.
B. E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
82
,
1197
(
2003
).
7.
A. D.
Li
,
Q. Y.
Shao
,
H. Q.
Ling
,
J. B.
Cheng
,
D.
Wu
,
Z. G.
Liu
,
N. B.
Ming
,
C.
Wang
,
H. W.
Zhou
, and
B. Y.
Nguyen
,
Appl. Phys. Lett.
83
,
3540
(
2003
).
8.
L. F.
Edge
,
D. G.
Schlom
,
P.
Sivasubramani
,
R. M.
Wallace
,
B.
Hollander
, and
J.
Schubert
,
Appl. Phys. Lett.
88
,
112907
(
2006
).
9.
L.
Becerra
,
C.
Merckling
,
N.
Baboux
,
C.
Plossu
,
O.
Marty
,
M.
El-Kazzi
,
G.
Saint-Girons
,
B.
Vilquin
, and
G.
Hollinger
,
Appl. Phys. Lett.
91
,
192909
(
2007
).
10.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
11.
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
J. M.
Finder
,
C. D.
Overgaard
,
R.
Droopad
,
K. W.
Eisenbeiser
,
J. A.
Hallmark
,
W. J.
Ooms
,
J. R.
Conner
, and
V. S.
Kaushik
,
J. Vac. Sci. Technol. B
18
,
1653
(
2000
).
12.
M. A.
Saifi
and
L. E.
Cross
,
Phys. Rev. B
2
,
677
(
1970
).
13.
C.
Merckling
,
G.
Delhaye
,
M.
El-Kazzi
,
S.
Gaillard
,
Y.
Rozier
,
L.
Rapenne
,
B.
Chenevier
,
O.
Marty
,
G.
Saint-Girons
,
M.
Gendry
,
Y.
Robach
, and
G.
Hollinger
,
Microelectron. Reliab.
47
,
540
(
2007
).
14.
W. F.
Xiang
,
H. B.
Lu
,
Z. H.
Chen
,
X. B.
Lu
,
M.
He
,
H.
Tian
,
Y. L.
Zhou
,
C. R.
Li
, and
X.
Ma
,
J. Cryst. Growth
271
,
165
(
2004
).
15.
Y. Y.
Mi
,
Z.
Yu
,
S. J.
Wang
,
P. C.
Lim
,
Y. L.
Foo
,
A. C. H.
Huan
, and
C.
Ong
,
Appl. Phys. Lett.
90
,
181925
(
2007
).
16.
J. W.
Reiner
,
A.
Posadas
,
M.
Wang
,
T. P.
Ma
, and
C. H.
Ahn
,
Microelectron. Eng.
85
,
36
(
2008
).
17.
J. W.
Reiner
,
K. F.
Garrity
,
F. J.
Walker
,
S.
Ismail-Beigi
, and
C. H.
Ahn
,
Phys. Rev. Lett.
101
,
105503
(
2008
).
18.
W. -K.
Lye
,
E.
Hasegawa
,
T. P.
Ma
,
R. C.
Barker
,
Y.
Hu
,
J.
Kuehne
, and
D.
Frystak
,
Appl. Phys. Lett.
71
,
2523
(
1997
).
19.
C. J.
Först
,
C. R.
Ashman
,
K.
Schwarz
, and
P. E.
Blöchl
,
Nature (London)
427
,
53
(
2004
).
20.
Y.
Segal
,
J. W.
Reiner
,
A. M.
Kolpak
,
Z.
Zhang
,
S.
Ismail-Beigi
,
C. H.
Ahn
, and
F. J.
Walker
,
Phys. Rev. Lett.
102
,
116101
(
2009
).
21.
D.
Fuchs
,
M.
Adam
,
P.
Schweiss
, and
R.
Schneider
,
J. Appl. Phys.
91
,
5288
(
2002
).
22.
J. C.
Woicik
,
H.
Li
,
P.
Zschack
,
E.
Karapetrova
,
P.
Ryan
,
C. R.
Ashman
, and
C. S.
Hellberg
,
Phys. Rev. B
73
,
024112
(
2006
).
23.
Synchrotron x-ray measurements conducted at the Advanced Photon Source indicate that 5 unit cell SrTiO3 films are coherently strained to the Si lattice.
24.
I. Y.-K.
Chang
and
J. Y.-M.
Lee
,
Appl. Phys. Lett.
93
,
223503
(
2008
).
25.
K.
Xiong
,
J.
Robertson
, and
S. J.
Clark
,
Appl. Phys. Lett.
89
,
022907
(
2006
).
26.
Wet oxygen is high purity oxygen that has been bubbled through distilled, de-ionized water prior to flowing through the tube furnace.
27.
S.
Jeon
,
F. J.
Walker
,
C.
Billman
,
R.
McKee
, and
H.
Hwang
,
IEEE Electron Device Lett.
24
,
218
(
2003
).
28.
E. H.
Nicollian
and
J.
Brews
,
Metal Oxide Semiconductor Physics and Technology
(
Wiley
,
New York
,
1982
).
29.
P.
Balk
,
S.
Ewert
,
S.
Schmitz
, and
A.
Steffen
,
J. Appl. Phys.
69
,
6510
(
1991
).
30.
M. V.
Abrashev
,
A. P.
Litvinchuk
,
M. N.
Iliev
,
R. L.
Meng
,
V. N.
Popov
,
V. G.
Ivanov
,
R. A.
Chakalov
, and
C.
Thomsen
,
Phys. Rev. B
59
,
4146
(
1999
).
31.
M.
Wang
,
W.
He
,
T. P.
Ma
,
L. F.
Edge
, and
D. G.
Schlom
,
Appl. Phys. Lett.
90
,
053502
(
2007
).
32.
W.
He
and
T. P.
Ma
,
Appl. Phys. Lett.
83
,
2605
(
2003
).
You do not currently have access to this content.