The radio-frequency (rf) power absorption due to a small hemispherical protrusion on a resonant cavity’s surface is computed analytically. This protrusion may assume arbitrary values of permittivity, permeability, and conductivity so that it may represent a foreign object. Under the assumption that the protrusion radius, a, is small compared with the rf wavelength, the power dissipated in the protrusion by the rf electric field and by the rf magnetic field are calculated explicitly. It is found that, in general, the heating by the rf magnetic field is dominant when δ/a<1, even for nonmagnetic materials, where δ is the skin depth associated with the protrusion material. The field enhancement factors for both the rf electric field and the rf magnetic field on the protrusion are also calculated analytically. They are found to decrease as δ/a increases. They are spot checked against the MAXWELL 3D code. These field enhancement factors are also consistent with the published results in the δ=0 limit, in which case the protrusion may represent a small local bump on the surface of a superconducting cavity.

1.
V.
Shemelin
and
H.
Padamsee
, SRF 080903–04, TESLA,
2008
.
2.
J. H.
Booske
,
Phys. Plasmas
15
,
055502
(
2008
).
3.
Y.
Iwashita
and
Y.
Tajima
,
Phys. Rev. ST Accel. Beams
11
,
093501
(
2008
);
Y.
Iwashita
and
T.
Higo
,
Proceedings of the LINAC
,
2004
(unpublished).
4.
M.
Petelin
,
J.
Hirshfield
,
Y. Y.
Danilov
,
S.
Kuzikov
,
V.
Pavelyev
,
D.
Schegolkov
, and
A.
Yunakovsky
,
AIP Conf. Proc.
807
,
408
(
2006
).
5.
G. P.
Scheitrum
, in
Modern Microwave and Millimeter-Wave Power Electronics
, edited by
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, Jr.
, and
G. S.
Nusinovich
(
IEEE
,
Piscataway
,
2005
), Chap. 7, p.
343
.
6.
V. I. V.
Bobkov
,
J. -M.
Noterdaeme
, and
R.
Wilhelm
,
Surf. Coat. Technol.
200
,
822
(
2005
).
7.
H.
Pandit
,
D.
Shi
,
N. H.
Babu
,
X.
Chaud
,
D. A.
Cardwell
,
P.
He
,
D.
Isfort
,
R.
Tournier
,
D.
Mast
, and
A. M.
Ferendeci
,
Physica C
425
,
44
(
2005
).
8.
V. A.
Dolgashev
and
S. G.
Tantawi
,
AIP Conf. Proc.
691
,
151
(
2003
).
9.
D. P.
Pritzkau
and
R. H.
Siemann
,
Phys. Rev. ST Accel. Beams
5
,
112002
(
2002
);
D. P.
Pritzkau
, “
RF pulse heating
,” Ph.D. thesis,
Stanford University
,
2001
.
10.
W.
Wuensch
,
AIP Conf. Proc.
647
,
506
(
2002
).
11.
H.
Padamsee
,
Supercond. Sci. Technol.
14
,
R28
(
2001
);
H.
Padamsee
,
J.
Knobloch
, and
T.
Hays
,
RF Superconductivity for Accelerators
(
Wiley
,
New York
,
1998
).
12.
J. B. O.
Caughman
,
C.
Castano-Giraldo
,
M.
Aghazarian
,
F. W.
Baity
,
D. A.
Rasmussen
, and
D. N.
Ruzic
,
AIP Conf. Proc.
933
,
195
(
2007
).
13.
E. W.
Collings
,
M. D.
Sumption
, and
T.
Tajima
,
Supercond. Sci. Technol.
17
,
S595
(
2004
).
14.
J. J.
Song
,
S.
Bajikar
,
Y. W.
Kang
,
R. L.
Kustom
,
D. C.
Mancini
,
A.
Nassiri
, and
B.
Lai
,
Proceedings of the IEEE PAC97
, Vancouver,
1997
(unpublished), p.
461
.
15.
M. J.
Lancaster
,
Passive Microwave Device Applications of High-Temperature Superconductors
(
Cambridge University Press
,
Cambridge
,
1997
).
16.
Z.
Zhai
,
C.
Kusko
,
N.
Hakim
, and
S.
Sridhar
,
Rev. Sci. Instrum.
71
,
3151
(
2000
).
17.
L. K.
Ang
,
Y. Y.
Lau
,
R. M.
Gilgenbach
, and
H. L.
Spindler
,
Appl. Phys. Lett.
70
,
696
(
1997
).
18.
H.
Bosman
, Ph.D. thesis,
University of Michigan
,
2004
.
19.
T.
Sun
,
B.
Yao
,
A. P.
Warren
,
K.
Barmak
,
M. F.
Toney
,
R. E.
Peale
, and
K. R.
Coffey
,
Phys. Rev. B
79
,
041402
(R) (
2009
).
20.
R.
Miller
,
Y. Y.
Lau
, and
J. H.
Booske
,
Appl. Phys. Lett.
91
,
074105
(
2007
).
21.
K. L.
Jensen
,
Y. Y.
Lau
,
D. W.
Feldman
, and
P. G.
O’Shea
,
Phys. Rev. ST Accel. Beams
11
,
081001
(
2008
).
22.
P.
Wilson
,
High Gradient Workshop
,
2007
(unpublished).
23.
T. A.
de Assis
,
F.
Borondo
,
R. M.
Benito
, and
R. F. S.
Andrade
,
Phys. Rev. B
78
,
235427
(
2008
).
24.
A. A.
Neuber
,
L.
Laurent
,
Y. Y.
Lau
, and
H.
Krompholz
, in
High-Power Microwave Sources and Technologies
, edited by
R. J.
Barker
and
E.
Schamiloglu
(
IEEE
,
New York
,
2001
), Chap. 10, p.
325
.
25.
J.
Knobloch
,
R. L.
Geng
,
M.
Liepe
, and
H.
Padamsee
,
Proceedings of the SRF
, Santa Fe, NM,
1999
(unpublished).
27.
H.
Bosman
,
W.
Tang
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
85
,
3319
(
2004
).
28.
W.
Tang
,
H.
Bosman
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
J. Appl. Phys.
97
,
114915
(
2005
).
29.
S.
Ramo
,
J. R.
Whinnery
, and
T.
Van Duzer
,
Fields and Waves in Communications Electronics
(
Wiley
,
New York
,
1994
), p.
508
.
30.
G. L.
Carr
,
S.
Perkowitz
, and
D. B.
Tanner
, in
Infrared and MM Waves
, edited by
K. J.
Button
(
Academic
,
New York
,
1985
), Vol.
13
, p.
171
.
31.
R. E.
Collin
,
Field Theory of Guided Waves
, 2nd ed. (
IEEE
,
New York
,
1990
).
32.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon
,
New York
,
1984
), p.
322
.
33.
J.
Cheng
,
R.
Roy
, and
D.
Agrawal
,
J. Mater. Sci. Lett.
20
,
1561
(
2001
).
34.
J. H.
Jeans
,
The Mathematical Theory of Electricity and Magnetism
, 4th ed. (
Cambridge University Press
,
Cambridge
,
1920
), p.
194
.
35.
R. G.
Forbes
,
C. J.
Edgcombe
, and
U.
Valdre
,
Ultramicroscopy
95
,
57
(
2003
).
36.
A. C.
Rose-Innes
and
E. H.
Rhoderick
,
Introduction to Superconductivity
(
Pergamon Press
,
Glasgow
,
1969
), p.
68
.
37.
N. M.
Jordan
,
Y. Y.
Lau
,
D. M.
French
,
R. M.
Gilgenbach
, and
P.
Pengvanich
,
J. Appl. Phys.
102
,
033301
(
2007
).
38.
N. M.
Jordan
,
R. M.
Gilgenbach
,
B.
Hoff
, and
Y. Y.
Lau
,
Rev. Sci. Instrum.
79
,
064705
(
2008
).
You do not currently have access to this content.