Hexagonal closed-packed (hcp) nickel has only been discovered in nanostructures. In this work, systematic ab initio calculations have been applied to study nickel nanowires with hexagonal close-packed structure in diameters of up to 2.2 nm. For all comparable nickel nanowires in our calculations, the hcp nanowire with [0001] axial direction is energetically favored against fcc nanowire with [111] axial direction. In hcp nickel nanowires, ferromagnetism is found existing at ground state and surface atoms of the nanowires are found having larger magnetic moments than core atoms have.

1.
E. J.
Menke
,
M. A.
Thompson
,
C.
Xiang
,
L. C.
Yang
, and
R. M.
Penner
,
Nature Mater.
5
,
914
(
2006
).
2.
Y. R. B.
Yoo
and
N. V.
Myung
,
Nanotechnology
17
,
2512
(
2006
).
3.
W.
Wernsdorfer
,
B.
Doudin
,
D.
Mailly
,
K.
Hasselbach
,
A.
Benoit
,
J.
Meier
, and
J. P.
Ansermet
, and
B.
Barbara
,
Phys. Rev. Lett.
77
,
1873
(
1996
).
4.
K.
Nielsch
,
R. B.
Wehrspohn
,
J.
Barthel
,
J.
Kirschner
,
U.
Gosele
,
S. F.
Fischer
, and
H.
Kronmuller
,
Appl. Phys. Lett.
79
,
1360
(
2001
).
5.
K.
Nielsch
,
R.
Wehrspohn
,
J.
Barthel
,
J.
Kirschner
,
S.
Fischer
,
H.
Kronmüller
,
T.
Schweinböck
,
D.
Weiss
, and
U.
Gösele
,
J. Magn. Magn. Mater.
249
,
234
(
2002
).
6.
Y.
Rheem
,
B.
Yoo
,
W.
Beyermann
, and
N.
Myung
,
Nanotechnology
18
,
015202
(
2007
).
7.
F.
Tian
,
J.
Zhu
,
D.
Wei
, and
Y.
Shen
,
J. Phys. Chem. B
109
,
14852
(
2005
).
8.
F.
Tian
,
D.
Wei
, and
J.
Zhu
,
Proceedings of the INTERMAG Asia 2005
,
2005
(unpublished), pp.
1369
1370
.
9.
F.
Tian
,
J.
Chen
,
J.
Zhu
, and
D.
Wei
,
J. Appl. Phys.
103
,
013901
(
2008
).
10.
F.
Tian
,
J.
Zhu
, and
D.
Wei
,
J. Phys. Chem. C
111
,
12669
(
2007
).
11.
F.
Tian
,
J.
Zhu
, and
D.
Wei
,
J. Phys. Chem. C
111
,
6994
(
2007
).
12.
S.
Apsel
,
J.
Emmert
,
J.
Deng
, and
L.
Bloomfield
,
Phys. Rev. Lett.
76
,
1441
(
1996
).
13.
C.
Chinnasamy
,
B.
Jeyadevan
,
K.
Shinoda
,
K.
Tohji
,
A.
Narayanasamy
,
K.
Sato
, and
S.
Hisano
,
J. Appl. Phys.
97
,
10J309
(
2005
).
14.
V.
Tzitzios
,
G.
Basina
,
M.
Gjoka
,
V.
Alexandrakis
,
V.
Georgakilas
,
D.
Niarchos
,
N.
Boukos
, and
D.
Petridis
,
Nanotechnology
17
,
3750
(
2006
).
15.
Y.
Mi
,
D.
Yuan
,
Y.
Liu
,
J.
Zhang
, and
X.
Yong
,
Mater. Chem. Phys.
89
,
359
(
2005
).
16.
Y.
Jeon
,
J.
Moon
,
G.
Lee
,
J.
Park
, and
Y.
Chang
,
J. Phys. Chem. B
110
,
1187
(
2006
).
17.
18.
E.
Wimmer
,
A.
Freeman
, and
H.
Krakauer
,
Phys. Rev. B
30
,
3113
(
1984
).
19.
O.
Jepsen
,
J.
Madsen
, and
O.
Andersen
,
Phys. Rev. B
26
,
2790
(
1982
).
20.
M.
Alden
,
H.
Skriver
,
S.
Mirbt
, and
B.
Johansson
,
Surf. Sci.
315
,
157
(
1994
).
21.
X.
He
,
L. T.
Kong
, and
B. X.
Liu
,
J. Appl. Phys.
97
,
106107
(
2005
).
22.
D.
Papaconstantopoulos
,
J.
Fry
, and
N.
Brener
,
Phys. Rev. B
39
,
2526
(
1989
).
23.
J.
Soler
,
E.
Artacho
,
J.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
24.
A.
Postnikov
,
P.
Entel
, and
J.
Soler
,
Eur. Phys. J. D
25
,
261
(
2003
).
25.
V.
Langlais
,
S.
Arrii
,
L.
Pontonnier
, and
G.
Tourillon
,
Scr. Mater.
44
,
1315
(
2001
).
26.
X.
Lu
,
S.
Ge
,
L.
Jiang
, and
X.
Wang
,
J. Appl. Phys.
97
,
084304
(
2005
).
27.
A. J.
Freeman
and
R. -Q.
Wu
,
J. Magn. Magn. Mater.
100
,
497
(
1991
).
You do not currently have access to this content.