Frequency-domain photothermoacoustic (FD-PTA) imaging of biological tissues is presented and compared with the conventional time-domain methodology. We demonstrate that tissue imaging can be performed with high axial resolution without the necessity to employ short-pulse and high peak-power laser systems to generate acoustic transients. The presented analysis shows that depth information in the FD-PTA method can be recovered by using linear frequency-modulated (chirped) optical excitation and frequency-domain signal processing algorithms. The signal-to-noise ratio can be increased significantly using correlation processing, which can compensate for the small amplitude of acoustic waves typical to the periodic excitation mode. Additionally, narrow-band signal demodulation enables depth-specific and confocal tissue imaging using the optically induced photothermoacoustic effect. Application of the FD-PTA is demonstrated in experiments with turbid phantoms and ex vivo tissue specimens.

1.
Handbook of Optical Biomedical Diagnostics
, edited by
V. V.
Tuchin
(
SPIE Press
, Bellingham,
2002
).
2.
S. R.
Arridge
,
Inverse Probl.
15
,
R41
(
1999
).
3.
A. P.
Gibson
,
J. C.
Hebden
, and
S. R.
Arridge
,
Phys. Med. Biol.
50
,
R1
(
2005
).
4.
D.
Huang
,
E. A.
Swanson
,
C. P.
Lin
,
J. S.
Schuman
,
W. G.
Stinson
,
W.
Chang
,
M. R.
Hee
,
T.
Flotte
,
K.
Gregory
,
C. A.
Puliafito
, and
J. G.
Fujimoto
,
Science
254
,
1178
(
1991
).
5.
M. R.
Hee
,
J. A.
Izzat
,
J. M.
Jacobson
, and
J. G.
Fujimoto
,
Opt. Lett.
18
,
950
(
1993
).
6.
G.
Mitic
,
J.
Kolzer
,
J.
Otto
,
E.
Plies
,
G.
Solkner
, and
W.
Zinth
,
Appl. Opt.
33
,
6699
(
1994
).
7.
F. A.
Duck
,
Physical Properties of Tissue
(
AP
,
London
,
1990
).
8.
A.
Oraevsky
and
A.
Karabutov
,
Proc. SPIE
3916
,
228
(
2000
).
9.
V. G.
Andreev
,
A. A.
Karabutov
, and
A. A.
Oraevsky
,
IEEE Trans. Ultrason. Ferroelec. Freq. Control
50
,
1383
(
2003
).
10.
M.
Xu
and
L.
Wang
,
Rev. Sci. Instrum.
77
,
041101
(
2006
).
11.
S.
Ermilov
,
A.
Stein
,
A.
Conjusteau
,
R.
Gharieb
,
R.
Lacewell
,
T.
Miller
,
S.
Thompson
,
P.
Otto
,
B.
McCorvey
,
T.
Khamapirad
,
M.
Leonard
, and
A.
Oraevsky
,
Proc. SPIE
6437
,
643703
(
2007
).
12.
S.
Manohar
,
A.
Kharine
,
J. C. G.
van Hespen
,
W.
Steenbergen
, and
T. G.
van Leeuwen
,
Phys. Med. Biol.
50
,
2543
(
2005
).
13.
G.
Ku
,
X.
Wang
,
X.
Xie
,
G.
Stoica
, and
L. V.
Wang
,
Appl. Opt.
44
,
770
(
2005
).
14.
E. Z.
Zhang
,
J.
Laufer
, and
P.
Beard
,
Proc. SPIE
6437
,
64370S
(
2007
).
15.
Y.
Fan
,
A.
Mandelis
,
G.
Spirou
, and
I. A.
Vitkin
,
J. Acoust. Soc. Am.
116
,
3523
(
2004
).
16.
Y.
Fan
,
A.
Mandelis
,
G.
Spirou
,
I. A.
Vitkin
, and
W. M.
Whelan
,
Phys. Rev. E
72
,
051908
(
2005
).
17.
S.
Telenkov
and
A.
Mandelis
,
J. Biomed. Opt.
11
,
044006
(
2006
).
18.
V. E.
Gusev
and
A. A.
Karabutov
,
Laser Optoacoustics
(
AIP
,
NY
,
1993
).
19.
R. A.
Kruger
,
D. R.
Reinecke
, and
G. A.
Kruger
,
Med. Phys.
26
,
1832
(
1999
).
20.
M.
Xu
,
Y.
Xu
, and
L. V.
Wang
,
IEEE Trans. Biomed. Eng.
50
,
1086
(
2003
).
21.
C. G. A.
Hoelen
and
F. F. M.
de Mul
,
Appl. Opt.
39
,
5872
(
2000
).
22.
A.
Rosencwaig
,
Photoacoustics and Photoacoustic Spectroscopy
(
Wiley
,
New York
,
1980
).
23.
V. P.
Zharov
and
V. S.
Letokhov
,
Laser Optoacoustic Spectroscopy
(
Springer-Verlag
,
Berlin
,
1986
).
24.
A. A.
Karabutov
,
E. V.
Savateeva
,
N. B.
Podymova
, and
A. A.
Oraevsky
,
J. Appl. Phys.
87
,
2003
(
2000
).
25.
S. A.
Ermilov
,
A.
Conjusteau
,
K.
Mehta
,
R.
Lacewell
,
P. M.
Henrichs
, and
A. A.
Oraevsky
,
Proc. SPIE
6086
,
608609
(
2006
).
26.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
,
1953
).
27.
K. P.
Kostli
,
M.
Frenz
,
H. P.
Weber
,
G.
Paltauf
, and
H.
Schmidt-Kloiber
,
Appl. Opt.
40
,
3800
(
2001
).
28.
K.
Maslov
,
G.
Stoica
, and
L. V.
Wang
,
Opt. Lett.
30
,
625
(
2005
).
29.
V. G.
Andreev
,
A. A.
Karabutov
,
S. V.
Solomatin
,
E. V.
Savateeva
,
V.
Aleinikov
,
Y. V.
Zhulina
,
R. D.
Fleming
, and
A. A.
Oraevsky
,
Proc. SPIE
3916
,
36
(
2000
).
30.
R. O.
Esenaliev
,
H.
Alma
,
F. K.
Tittel
, and
A. A.
Oraevsky
,
Proc. SPIE
3254
,
294
(
1998
).
31.
A. A.
Oraevsky
,
V. A.
Andreev
,
A. A.
Karabutov
,
R. D.
Fleming
,
Z.
Gatalica
,
H.
Singh
, and
R. O.
Esenaliev
,
Proc. SPIE
3597
,
352
(
1999
).
32.
A. A.
Oraevsky
,
A. A.
Karabutov
,
S. V.
Solomatin
,
E. V.
Savateeva
,
V. A.
Andreev
,
Z.
Gatalica
,
H.
Singh
, and
R. D.
Fleming
,
Proc. SPIE
4256
,
6
(
2001
).
33.
T.
Khamapirad
,
P. M.
Henrichs
,
K.
Mehta
,
T. G.
Miller
,
A. T.
Yee
, and
A. A.
Oraevsky
,
Proc. SPIE
5697
,
35
(
2005
).
34.
G.
Ku
and
L. V.
Wang
,
Opt. Lett.
30
,
507
(
2005
).
35.
A.
Agrawal
,
S. -W.
Huang
,
K. C.
Day
,
M.
O’Donnell
,
M.
Day
,
N.
Kotov
, and
S.
Ashkenazi
,
Proc. SPIE
6437
,
64370H
(
2007
).
36.
A.
Rosencwaig
and
A.
Gersho
,
J. Appl. Phys.
47
,
64
(
1976
).
37.
A. C.
Tam
,
Rev. Mod. Phys.
58
,
381
(
1986
).
38.
M. W.
Sigrist
,
J. Appl. Phys.
60
,
R83
(
1986
).
39.
Radar Handbook
, edited by
M. I.
Skolnik
(
McGraw-Hill
,
New York
,
1990
).
40.
C. E.
Cook
and
M.
Bernfeld
,
Radar Signals. An Introduction to Theory and Application
(
Academic
,
New York
,
1967
).
41.
R. A.
Mucci
,
IEEE Trans. Acoust., Speech, Signal Process.
32
,
548
(
1984
).
You do not currently have access to this content.