The hermeticity and diffusion behavior of “epi-seal” encapsulation [R. N. Candler et al, J. Microelectromech. Syst.15, 1446 (2006); B. Kim et al, Proceedings of the ASME 2007 InterPACK Conference (InterPACK’07), 33234 (2007)], an epitaxially deposited polysilicon film encapsulation for microelectromechanical systems (MEMSs), were investigated. MEMS resonators with pressure sensitive quality factor were fabricated inside episeal cavities. By measuring the quality factor and inferring cavity pressure, leakage through the encapsulation was studied as a continuation of previous hermeticity investigations [B. Kim et al, Proceedings of the

2004 ASME International Mechanical Engineering Congress and Exposition
, IMECE, pp. 413–416 (2004)]. During long-term monitoring performed at 100°C in a normal atmosphere, the encapsulated cavity pressure increased at a rate of 510mTorr/yr, whereas no measurable pressure change could be detected in our previous room temperature measurement performed with identically designed and encapsulated resonators. To identify the cause of this pressure increase, the diffusive gas species and diffusion pathways in the epi-seal encapsulation were investigated experimentally. Various gas species in the atmosphere were tested in a 400°C accelerated environment. These tests identified hydrogen and helium as highly diffusive gas species and showed argon and nitrogen to be much less diffusive under these conditions. Also, a series of devices with modifications of encapsulation geometry was tested in a hydrogen environment at 400°C. Silicon dioxide, used for sacrificial and passivation layers, was identified as the primary diffusion pathway through the epi-seal encapsulation. These experimental results and diffusion pathway models were compared with the diffusion activation energy of various gas species in semiconductor materials, enabling design and process optimization for improved hermeticity of wafer-scale thin-film encapsulation for MEMS devices.

1.
K.
Najafi
,
Proc. SPIE
4979
, pp.
1
19
(
2003
).
2.
R. N.
Candler
,
M. A.
Hopcroft
,
B.
Kim
,
W. T.
Park
,
R.
Melamud
,
M.
Agarwal
,
G.
Yama
,
A.
Partridge
,
M.
Lutz
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
15
,
1446
(
2006
).
3.
B.
Kim
,
M. A.
Hopcroft
,
R.
Melamud
,
C. M.
Jha
,
M.
Agarwal
,
S. A.
Chandorkar
, and
T. W.
Kenny
, Proceedings of the 2007 InterPACK Conference (InterPACK '07),
33234
(
2007
).
4.
B.
Kim
,
R. N.
Candler
,
M.
Hopcroft
,
M.
Agarwal
,
W. -T.
Park
,
J. T.
Li
, and
T.
Kenny
, Proceedings of the
2004 ASME International Mechanical Engineering Congress and Exposition, IMECE
, pp.
413
416
(
2004
).
5.
R.
Gooch
,
T.
Schimert
,
W.
McCardel
,
B.
Ritchey
,
D.
Gilmour
, and
W.
Koziarz
,
J. Vac. Sci. Technol. A
17
,
2295
(
1999
).
6.
A.
Jourdain
,
P.
De Moor
,
S.
Pamidighantam
, and
H. A. C.
Tilmans
, Proceedings of the
15th IEEE International Conferences on Micro Electro Mechanical Systems (MEMS)
, pp.
677
680
(
2002
).
7.
B. H.
Stark
and
K.
Najafi
,
J. Microelectromech. Syst.
13
,
147
(
2004
).
8.
R.
He
and
C. -J.
Kim
, Proceedings of the 19th International Conferences on Micro Electro Mechanical Systems (MEMS), pp.
126
129
(
2006
).
9.
R.
He
and
C. -J.
Kim
,
J. Microelectromech. Syst.
16
,
462
(
2007
).
10.
D. R.
Sparks
,
S.
Massoud-Ansari
, and
N.
Najafi
,
IEEE Trans. Adv. Packag.
26
,
277
(
2003
).
13.
Y. -H.
Cho
,
A. P.
Pisano
, and
R. T.
Howe
,
J. Microelectromech. Syst.
3
,
81
(
1994
).
14.
H.
Hosaka
,
K.
Itao
, and
S.
Kuroda
,
Sens. Actuators, A
49
,
87
(
1995
).
15.
X.
Zhang
and
W. C.
Tang
,
Proceedings of the 7th IEEE International Conferences on Micro Electro Mechanical Systems (MEMS)
, pp.
199
204
(
1994
).
16.
M. H.
Bao
,
H.
Yang
,
H.
Yin
, and
Y. C.
Sun
,
J. Micromech. Microeng.
12
,
341
(
2002
).
17.
W.
Ye
and
S.
Hutcherson
, Proceedings of the 13th
International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS’05
,
1
, pp.
772
775
(
2005
).
18.
Z.
Kadar
,
W.
Kindt
,
A.
Bossche
, and
J.
Mollinger
,
Sens. Actuators, A
53
,
299
(
1996
).
19.
J. B.
Starr
,
Technical Digest of the 4th IEEE Solid-State Sensors and Actuator Workshop
, pp.
44
47
(
1990
).
20.
B.
Kim
,
R. N.
Candler
,
M.
Hopcroft
,
M.
Agarwal
,
W. -T.
Park
, and
T. W.
Kenny
,
Proceedings of the 13th International Conference on Solid State Sensors and Actuators and Microsystems (TRANSDUCERS’05)
,
2
, pp.
1965
1968
(
2005
).
21.
B.
Kim
,
R. N.
Candler
,
M.
Hopcroft
,
M.
Agarwal
,
W. -T.
Park
, and
T. W.
Kenny
,
Sens. Actuators, A
136
,
125
(
2007
).
22.
B.
Kim
,
M. A.
Hopcroft
,
C. M.
Jha
,
R.
Melamud
,
S. A.
Chandorkar
,
M.
Agarwal
,
K. L.
Chen
,
W. T.
Park
,
R. N.
Candler
,
G.
Yama
,
A.
Patridge
,
M.
Lutz
, and
T. W.
Kenny
,
Proceedings of the 14th International Conference on Solid State Sensors and Actuators and Microsystems (TRANSDUCERS’07)
,
1
, pp.
331
334
(
2007
).
23.
G.
Panzarini
and
L.
Colombo
,
Phys. Rev. Lett.
73
,
1636
(
1994
).
24.
S.
Lanzavecchia
and
L.
Colombo
,
Europhys. Lett.
36
,
295
(
1996
).
25.
C. G.
Van de Walle
,
J. Vac. Sci. Technol. A
16
,
1767
(
1998
).
26.
R. G.
Barry
and
R. J.
Chorley
,
Atmosphere, Weather, and Climate
(
Routhledge
,
Milton Park
,
1998
).
27.
W. G.
Perkins
and
D. R.
Begeal
,
J. Chem. Phys.
54
,
1683
(
1971
).
28.
J. E.
Shelby
,
J. Appl. Phys.
48
,
3387
(
1977
).
29.
N. H.
Nickel
,
J. Vac. Sci. Technol. B
18
,
1770
(
2000
).
30.
31.
F. J.
Norton
,
Nature (London)
191
,
701
(
1961
).
32.
E. L.
Williams
,
J. Am. Ceram. Soc.
48
,
190
(
1965
).
33.
K.
Kajihara
,
M.
Hirano
,
Y.
Takimoto
,
L.
Skuja
, and
H.
Hosono
,
Appl. Phys. Lett.
91
,
071904
(
2007
).
34.
W. M. A.
Bik
,
R. N. H.
Linssen
,
F. H. P. M.
Habraken
,
W. F.
van der Weg
, and
A. E. T.
Kuiper
,
Appl. Phys. Lett.
56
,
2530
(
1990
).
You do not currently have access to this content.