Atomic layer deposition film growth is usually characterized by the presence of a transient (nonlinear) regime, where surface reactions of precursors take place on the substrate, resembling the first stages of chemical vapor deposition and affecting the composition of the forming interface. Here, the adsorption and decomposition of tetrakis(dimethylamido)titanium, Ti[N(CH3)2]4, tetrakis(dimethylamido)zirconium, Zr[N(CH3)2]4, tetrakis(dimethylamido)hafnium, Hf[N(CH3)2]4, pentakis(dimethylamido)tantalum, Ta[N(CH3)2]5, and bis(t-butylimido)-bis(dimethylamido)tungsten, [(CH3)3CN]2W[N(CH3)2]2, on a silicon substrate are investigated using density functional methods. These alkylamides are widely used for deposition of both diffusion barriers and high-permittivity (high-κ) materials. Adsorption is found to be dissociative, with scission of metal-ligand bonds being more feasible than scission of N–C bonds, suggesting that decomposition of ligands is not favored at low temperatures. However, decomposition through C–H bond scission may ultimately lead to the formation of Si–C bonds, without significant kinetic requirements and producing highly stable structures. The overall feasibility of the adsorption/decomposition pathway outlined here explains the presence of carbon at the interface in alkylamide-based deposition schemes.

1.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
2.
M.
Putkonen
and
L.
Niinisto
,
Top. Organomet. Chem.
9
,
125
(
2005
).
3.
H.
Kim
,
J. Vac. Sci. Technol. B
21
,
2231
(
2003
).
4.
J. C. F.
Rodríguez-Reyes
and
A. V.
Teplyakov
,
Chem.-Eur. J.
13
,
9164
(
2007
).
5.
D. M.
Hausmann
,
E.
Kim
,
J.
Becker
, and
M. S.
Gordon
,
Chem. Mater.
14
,
4350
(
2002
).
6.
K.
Kukli
,
T.
Pilvi
,
M.
Ritala
,
T.
Sajavaara
,
J.
Lu
, and
M.
Leskela
,
Thin Solid Films
491
,
328
(
2005
).
7.
A. E.
Kaloyeros
and
E.
Eisenbraun
,
Annu. Rev. Mater. Sci.
30
,
363
(
2000
).
8.
J. S.
Becker
,
S.
Suh
,
S.
Wang
, and
M. S.
Gordon
,
Chem. Mater.
15
,
2969
(
2003
).
9.
J.
Kim
,
S.
Lee
, and
K.
Yong
,
Jpn. J. Appl. Phys., Part 1
45
,
7080
(
2006
).
10.
S.
Consiglio
,
F.
Papadatos
,
S.
Naczas
,
S.
Skordas
,
E.
Eisenbraun
, and
A. E.
Kaloyeros
,
J. Electrochem. Soc.
153
,
F249
(
2006
).
11.
A.
Martin Hoyas
,
Y.
Travaly
,
J.
Schuhmacher
,
T.
Sajavaara
,
C. M.
Whelan
,
B.
Eyckens
,
O.
Richard
,
S.
Giangrandi
,
B.
Brijs
,
W.
Vandervorst
, and
K.
Maex
,
J. Appl. Phys.
99
,
063515
(
2006
).
12.
K. -S.
Kim
,
M. -S.
Lee
,
S. -S.
Yim
,
H. -M.
Kim
,
K. -B.
Kim
,
H. -S.
Park
,
W.
Koh
,
W. -M.
Li
,
M.
Stokhof
, and
H.
Sprey
,
Appl. Phys. Lett.
89
,
081913
(
2006
).
13.
M. B.
Takeyama
,
T.
Itoi
,
E.
Aoyagi
, and
A.
Noya
,
Appl. Surf. Sci.
216
,
181
(
2003
).
14.
J. E.
Crowell
,
J. Vac. Sci. Technol. A
21
,
S88
(
2003
).
15.
J. -W.
Lim
,
H. -S.
Park
, and
S. -W.
Kang
,
J. Electrochem. Soc.
148
,
C403
(
2001
).
16.
J. -H.
Kim
,
J. -Y.
Kim
, and
S. -W.
Kang
,
J. Appl. Phys.
97
,
093505
(
2005
).
17.
S. F.
Bent
,
J. Phys. Chem. B
106
,
2830
(
2002
).
18.
T.
Leftwich
and
A. V.
Teplyakov
,
Surf. Sci. Rep.
63
,
1
(
2008
).
19.
J. C. F.
Rodríguez-Reyes
and
A. V.
Teplyakov
,
J. Phys. Chem. C
111
,
4800
(
2007
).
20.
J. C. F.
Rodríguez-Reyes
and
A. V.
Teplyakov
,
J. Phys. Chem. C
112
,
9695
(
2008
).
21.
J. M.
Frisch
 et al, GAUSSIAN 03, Revision C. 02, Gaussian, Inc., Wallingford, CT,
2004
.
22.
A. B.
Mukhopadhyay
and
C. B.
Musgrave
,
Appl. Phys. Lett.
90
,
173120
(
2007
).
23.
J. C. F.
Rodríguez-Reyes
and
A. V.
Teplyakov
,
J. Phys. Chem. C
111
,
16498
(
2007
).
24.
M. E.
Davie
,
T.
Foerster
,
S.
Parsons
,
C.
Pulham
,
D. W. H.
Rankin
, and
B. A.
Smart
,
Polyhedron
25
,
923
(
2006
).
25.
D. C.
Bradley
and
M. H.
Chisholm
,
Acc. Chem. Res.
9
,
273
(
1976
).
26.
R. A.
Andersen
,
D. B.
Beach
, and
W. L.
Jolly
,
Inorg. Chem.
24
,
4741
(
1985
).
27.
Although it is possible to obtain stable structures for the reaction of Ta[N(CH3)2]5, successive structures along a pathway are very different due to the several rotations of ligands within this sterically crowded compound. The search for transition states for Ta using SQTN is not feasible in these conditions; other methods may be used, but these are beyond the aim of this investigation. The similarity of the barriers for the reactions under investigation for the other alkylamido precursors indicate that Ta[N(CH3)2]5 may follow a similar energy landscape.
You do not currently have access to this content.