Potential use of γ-TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys—the Gamma-Met PX. The Gamma-Met PX showed superior shock properties when compared to the conventional titanium aluminide alloys. The spall strength of Gamma-Met PX is 1.8±0.09GPa, which is four to six times higher than those reported for other gamma titanium aluminide alloys. Moreover, it has a Hugoniot elastic limit of 1.88 GPa at a target thickness of 3.86 mm, which drops to 1.15 GPa at target thickness of 15.8 mm. The decay in the elastic precursor is continuous without showing an asymptote to a constant level within the range of target thicknesses studied.

1.
L. C.
Chhabildas
,
L. M.
Barker
,
J. R.
Asay
, and
T. G.
Trucano
, in
Shock Compression of Condensed Matter 1989
, edited by
S. C.
Schmidt
,
J. N.
Johnson
, and
L. W.
Davison
(
APS
,
Albuquerque, NM
,
1989
), pp.
429
432
.
2.
Y. I.
Mescheryakov
,
A. K.
Divakov
,
N. I.
Zhigacheva
, and
Y. A.
Petrov
, in
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
R. S.
Hixon
, and
L. C.
Chhabildas
(
APS
,
Snowbird, UT
,
1999
), pp.
439
442
.
3.
S. V.
Razorenov
,
G. I.
Kanel
,
A. V.
Utkin
,
A. A.
Bogach
,
M.
Burkins
, and
W. A.
Gooch
, in
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
R. S.
Hixon
, and
L. C.
Chhabildas
(
APS
,
Snowbird, UT
,
1999
), pp.
415
418
.
4.
A.
Hopkins
and
N. S.
Brar
, in
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
R. S.
Hixon
, and
L. C.
Chhabildas
(
APS
,
Snowbird, UT
,
1999
), pp.
423
426
.
5.
D. P.
Dandekar
and
S. V.
Spletzer
, in
Shock Compression of Condensed Matter 1999
, edited by
M. D.
Furnish
,
R. S.
Hixon
, and
L. C.
Chhabildas
(
APS
,
Snowbird, UT
,
1999
), pp.
415
418
.
6.
A.
Ferreira
,
M. A.
Meyers
,
N. N.
Thadhani
,
S. N.
Chang
, and
J. R.
Kough
,
Metall. Trans. A
22A
,
685
(
1991
).
7.
E. V.
Shorokhov
,
B. A.
Greenberg
,
S. V.
Sudareva
,
O. V.
Antonova
,
T. S.
Boyarshinova
, and
E. P.
Romanov
,
239–240
,
688
(
1997
).
8.
G. T.
Gray
 III
,
J. Phys. IV
4
,
C8
373
(
1994
).
9.
J. C. F.
Millett
,
G. T.
Gray
, and
N. K.
Bourne
,
J. Appl. Phys.
88
,
3290
(
2000
).
10.
J. C.
Millett
,
N. K.
Bourne
, and
I. P.
Jones
,
J. Appl. Phys.
89
,
2566
(
2001
).
11.
J. C.
Millett
,
N. K.
Bourne
,
G. T.
Gray
 III
, and
I. P.
Jones
,
J. Phys. IV
110
,
929
(
2003
).
12.
A.
Venskutonis
and
K.
Rißbacher
,
Preparing for the Future
10
,
2
(
2000
).
13.
K. S.
Kim
,
R. J.
Clifton
, and
P.
Kumar
,
J. Appl. Phys.
48
,
4132
(
1977
).
14.
15.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
16.
J. C.
Millett
,
N. K.
Bourne
, and
I. P.
Jones
,
J. Appl. Phys.
90
,
1188
(
2001
).
17.
Y. I.
Mescheryakov
,
J. Phys. IV
110
,
911
(
2003
).
18.
A. V.
Bushman
,
G. I.
Kanel
,
J. W.
Shaner
,
S.
Chomet
,
A. L.
Ni
, and
V. E.
Fortov
,
Intense Dynamic Loading of Condensed Matter
(
Taylor & Francis
,
Bristol, PA
,
1992
).
19.
J. W.
Taylor
and
M. H.
Rice
,
J. Appl. Phys.
34
,
364
(
1963
).
20.
T. E.
Arvidsson
,
Y. M.
Gupta
, and
G. E.
Duvall
,
J. Appl. Phys.
46
,
4474
(
1975
).
21.
J. R.
Asay
and
Y. M.
Gupta
,
J. Appl. Phys.
43
,
2220
(
1972
).
22.
D. R.
Curran
,
L.
Seaman
, and
D. A.
Shockey
,
Phys. Rep.
147
,
253
(
1987
).
23.
G. I.
Kanel
,
S. V.
Razorenov
,
E. B.
Zeretsky
, and
B.
Hermann
,
J. Phys. IV
110
,
839
(
2003
).
24.
M. A.
Meyers
,
Dynamic Behavior of Materials
(
Wiley
,
New York
,
1994
).
25.
M.
Shazly
,
V.
Prakash
, and
S.
Draper
,
Int. J. Solids Struct.
41
,
6485
(
2004
).
26.
H. D.
Espinosa
,
Y. P.
Xu
, and
N. S.
Brar
,
J. Am. Ceram. Soc.
80
,
2074
(
1997
).
27.
J.
Cagnoux
and
F.
Longy
,
J. Phys. Colloq.
49
,
3
(
1988
).
You do not currently have access to this content.