To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program, ISP-SAND, was developed and used to generate the representative particulate system with mean grain sizes of 60 and as well as uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code ISP-TROTP. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring a larger sand target). The deep penetration simulation predicted considerable instability with a trajectory change of approximately when friction was considered in the dry sand medium. An overall conclusion of this work is that projectile penetration studies in geologic materials need to explicitly consider the heterogeneous or particulate nature of these materials.
Skip Nav Destination
Article navigation
15 October 2008
Research Article|
October 20 2008
Two dimensional mesoscale simulations of projectile instability during penetration in dry sand
S. K. Dwivedi;
S. K. Dwivedi
Institute for Shock Physics and Department of Physics,
Washington State University
, Pullman, Washington 99164-2816, USA
Search for other works by this author on:
R. D. Teeter;
R. D. Teeter
Institute for Shock Physics and Department of Physics,
Washington State University
, Pullman, Washington 99164-2816, USA
Search for other works by this author on:
C. W. Felice;
C. W. Felice
Institute for Shock Physics and Department of Physics,
Washington State University
, Pullman, Washington 99164-2816, USA
Search for other works by this author on:
Y. M. Gupta
Institute for Shock Physics and Department of Physics,
Washington State University
, Pullman, Washington 99164-2816, USA
Search for other works by this author on:
a)
Electronic Mail: ymgupta@wsu.edu.
J. Appl. Phys. 104, 083502 (2008)
Article history
Received:
June 26 2008
Accepted:
August 20 2008
Citation
S. K. Dwivedi, R. D. Teeter, C. W. Felice, Y. M. Gupta; Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J. Appl. Phys. 15 October 2008; 104 (8): 083502. https://doi.org/10.1063/1.2999391
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00