Short pulsed laser induced single acoustic wave generation, propagation, interaction with rigid structures, and focusing in water are experimentally and numerically studied. A large area short duration single plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid-solid interface and propagated at the speed of sound in water. Laser flash schlieren photography was used to visualize the transient interaction of the plane acoustic wave with various submerged rigid structures [(a) a single block, (b) double blocks, (c) 33° tilted single block, and (d) concave cylindrical acoustic lens configurations]. Excellent agreement between the experimental results and numerical simulation is observed. Our simulation results demonstrate that the laser induced planar acoustic wave can be focused down to several tens of micron size and several bars in pressure.

1.
R. M.
White
,
J. Appl. Phys.
34
,
3559
(
1963
).
2.
R. J.
Dewhurst
,
D. A.
Hutchins
,
S. B.
Palmer
, and
C. B.
Scruby
,
J. Appl. Phys.
53
,
4064
(
1982
).
3.
F. A.
McDonald
,
Appl. Phys. Lett.
54
,
1504
(
1989
).
4.
M.
Mesaros
,
O.
Martı’nez
,
G. M.
Bilmes
, and
J. O.
Tocho
,
J. Appl. Phys.
81
,
1014
(
1997
).
5.
H. K.
Park
,
C. P.
Grigoropoulos
,
W. P.
Leung
, and
A. C.
Tam
,
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
17
,
631
(
1994
).
6.
A.
Vogel
,
P.
Schweiger
,
A.
Frieser
,
M. N.
Asiyo
, and
R.
Birngruber
,
IEEE J. Quantum Electron.
26
,
2240
(
1990
).
7.
P.
Teng
,
N. S.
Nishioka
,
R. R.
Anderson
, and
T. F.
Deutsch
,
Appl. Phys. B: Lasers Opt.
42
,
73
(
1987
).
8.
A.
Schilling
,
O.
Yavas
,
J.
Bischof
,
J.
Boneberg
, and
P.
Leiderer
,
Appl. Phys. Lett.
69
,
4159
(
1996
).
9.
H. K.
Park
,
D.
Kim
,
C. P.
Grigoropoulos
, and
A. C.
Tam
,
J. Appl. Phys.
80
,
4072
(
1996
).
10.
F. V.
Bunkin
,
A. A.
Kolomensky
, and
V. G.
Mikhalevich
,
Lasers in Acoustics
(
Harwood, Academic
,
Chur
,
1991
).
11.
T.
Varslot
and
S. E.
Måsøy
,
Model. Identif. Control
27
,
181
(
2006
).
12.
S. H.
Ko
,
S. G.
Ryu
,
N.
Misra
,
H.
Pan
,
C. P.
Grigoropoulos
,
N.
Kladias
,
E.
Panides
, and
G. A.
Domoto
,
Appl. Phys. Lett.
91
,
051128
(
2007
).
13.
A.
Atalar
and
H.
Köymen
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
34
,
53
(
1987
).
14.
H.
Köymen
and
A.
Atalar
,
Appl. Phys. Lett.
47
,
1266
(
1985
).
15.
X.
Yin
and
K.
Hynynen
,
Phys. Med. Biol.
50
,
1821
(
2005
).
16.
A.
Mal
,
F.
Feng
,
M.
Kabo
,
J.
Wang
, and
Y.
Bar-Cohen
,
Proc. SPIE
4702
,
339
(
2002
).
17.
R. D.
Huber
,
D. J.
Chinn
,
O. O.
Balogun
, and
T. W.
Murray
,
Rev. Prog. Quant. Nondestr. Eval.
25
,
218
(
2006
).
18.
I. M.
Hallaj
and
R. O.
Cleveland
,
J. Acoust. Soc. Am.
105
,
L7
(
1999
).
19.
N. T.
Sanghvi
,
R. S.
Foster
,
R.
Bihrle
,
R.
Casey
,
T.
Uchida
,
M. H.
Phillips
,
J.
Syrus
,
A. V.
Zaitsev
,
K. W.
Marich
, and
F. J.
Fry
,
Eur. J. Ultrasound
9
,
19
(
1999
).
20.
D.
Kim
,
M.
Ye
, and
C. P.
Grigoropoulos
,
Appl. Phys. A: Mater. Sci. Process.
67
,
169
(
1998
).
21.
Acoustics module user’s guide, COMSOL Multiphysics,
2006
.
22.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
, 4th ed. (
Wiley
,
New York
,
2000
).
23.
J. J.
Markham
,
R. T.
Beyer
, and
R. B.
Lindsay
,
Rev. Mod. Phys.
23
,
353
(
1951
).
24.
H. K.
Park
,
C. P.
Grigoropoulos
,
C. C.
Poon
, and
A. C.
Tam
,
Appl. Phys. Lett.
68
,
596
(
1996
).
25.
H. K.
Park
,
C. P.
Grigoropoulos
,
C. C.
Poon
, and
A. C.
Tam
,
ASME Trans. J. Heat Transfer
118
,
702
(
1996
).
26.
See EPAPS document No. E-JAPIAU-104-094818 for the videos of the experimental pressure wave and its calculation. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
27.
E.
Hecht
,
Optics
, 4th ed. (
Addison-Wesley
,
New York
,
2002
).
28.
G.
Tas
and
H. J.
Maris
,
Phys. Rev. B
55
,
1852
(
1997
).
29.
O.
Halpern
and
H.
Hall
,
Phys. Rev.
73
,
477
(
1948
).

Supplementary Material

You do not currently have access to this content.