A monopolar GaAs Fabry–Pérot cavity laser based on the Gunn effect is studied both experimentally and theoretically. The light emission occurs via the band-to-band recombination of impact-ionized excess carriers in the propagating space-charge (Gunn) domains. Electroluminescence spectrum from the cleaved end-facet emission of devices with Ga1xAlxAs(x=0.32) waveguides shows clearly a preferential mode at a wavelength around 840 nm at T=95K. The threshold laser gain is assessed by using an impact ionization coefficient resulting from excess carriers inside the high-field domain.

1.
J. S.
Heeks
,
IEEE Trans. Electron Devices
13
,
68
(
1966
).
2.
N.
Balkan
and
M.
Hostut
,
Physica B (Amsterdam)
272
,
291
(
1999
).
3.
S.
Chung
,
A.
Boland-Thoms
,
J. Y.
Wah
,
N.
Balkan
, and
B. K.
Ridley
,
Semicond. Sci. Technol.
19
,
S400
(
2004
).
4.
W. H.
Hayt
, Jr.
,
Engineering Electromagnetics
(
McGraw-Hill
,
New York
,
1985
), p.
136
.
5.
E.
Kreyszig
,
Advanced Engineering Mathematics
, 6th ed. (
Wiley
,
New York
,
1981
), p.
1029
.
6.
B. K.
Ridley
,
Semicond. Sci. Technol.
3
,
542
(
1988
).
7.
C. H.
Gooch
,
Gallium Arsenide Lasers
(
Wiley
,
London
,
1969
), p.
104
.
8.
H. C.
Casey
, Jr.
and
M. B.
Panish
,
Heterostructure Lasers
(
Academic
,
New York
,
1978
), pp.
178
179
.
9.
W.
Fawcett
,
A. D.
Boardman
, and
S.
Swain
,
J. Phys. Chem. Solids
31
,
1963
(
1970
).
10.
H. D.
Rees
,
J. Phys. Chem. Solids
30
,
643
(
1969
).
11.
H. L.
Hartnagel
,
Gunn-Effect Logic Devices
, 1st ed. (
Heinemann Educational Books
,
London
,
1973
), p.
25
.
12.
P. N.
Butcher
,
W.
Fawcett
, and
C.
Hilsum
,
Br. J. Appl. Phys.
17
,
841
(
1966
).
13.
H. L.
Hartnagel
,
Gunn-Effect Logic Devices
, 1st ed. (
Heinemann Educational Books
,
London
,
1973
), Chap. 2.
14.
N.
Balkan
,
B. K.
Ridley
, and
A. J.
Vickers
,
Negative Differential Resistance and Instabilities in 2-D semiconductors
(
Plenum
,
New York
,
1993
), pp.
215
249
.
15.
E.
Zanoni
,
L.
Vendrame
,
P.
Pavan
,
M.
Manfredi
,
S.
Bigliardi
,
R.
Malik
, and
C.
Canali
,
Appl. Phys. Lett.
62
,
402
(
1993
).
16.
17.
18.
J.
Singh
,
Semiconductor Optoelectronics: Physics and Technology
(
McGraw-Hill
,
Singapore
,
1995
), p.
147
.
19.
P. P.
Bohn
and
G. J.
Herskowitz
,
IEEE Trans. Electron Devices
19
,
14
(
1972
).
20.
R. N.
Hall
,
Proc. Inst. Electr. Eng.
106B
,
923
(
1960
).
21.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
New York
,
1990
), p.
361
.
22.
Y. P.
Varshni
,
Phys. Status Solidi
19
,
459
(
1967
).
23.
L. A.
Coldren
and
S. W.
Corzine
,
Diode Lasers and Photonic Integrated Circuits
(
Wiley
,
New York
,
1995
), pp.
112
136
.
24.
Ibid
, p.
508
,
1995
.
25.
P. S.
Zory
, Jr.
,
Quantum Well Lasers
(
Academic
,
San Diego
,
1993
), p.
34
.
26.
W. W.
Chow
,
S. W.
Koch
, and
M.
Sargent
 III
,
Semiconductor-Laser Physics
(
Springer-Verlag
,
Berlin
,
1994
), p.
47
.
27.
L. A.
Coldren
and
S. W.
Corzine
,
Diode Lasers and Photonic Integrated Circuits
(
Wiley
,
New York
,
1995
), p.
39
.
You do not currently have access to this content.