We synthesized xKTiO2F(1x)BaTiO3 solid solution by the high pressure and temperature method. With regard to the temperature dependence of the dielectric permittivity, the three anomalies corresponding to the three phase transitions of BaTiO3 merged with the increase in x, and only one peak was observed for 0.12x0.20. The variation in TC with the composition, dTC/dx, of xKTiO2F(1x)BaTiO3 was approximately 14K/mol% for x0.12, which is almost the same as and larger than that of the 1/3xBaLiF3(11/3x)BaTiO3 and Ba(Ti1xMx)O3 (B=Zr, Sn, Hf, and Ce) solid solutions, respectively. This result indicates that the phase transition temperature is significantly affected by the substitution with F ion. Furthermore, it was found that the 0.15KTiO2F0.85BaTiO3 is an ideal relaxor and that the remnant polarization is 5.6μC/cm2 at 70 K, which is comparable to that of Ba(Ti0.7Zr0.3)O3. However, the εm of 0.15KTiO2F0.85BaTiO3 (5000 at 100 kHz) was smaller than that of the B-site ion-substituted relaxors: Ba(Ti0.7Zr0.3)O3 and Ba(Ti0.82Sn0.18)O3. Since the remnant polarization of 0.15KTiO2F0.85BaTiO3 at 70 K was comparable to that of Ba(Ti0.7Zr0.3)O3 at 175 K, the small εm of 0.15KTiO2F0.85BaTiO3 is found to be due to the decrease in the dielectric permittivity in the paraelectric region.

1.
L. E.
Cross
,
Ferroelectrics
76
,
241
(
1987
).
2.
D.
Viehland
,
S. G.
Jang
,
L. E.
Cross
, and
M.
Wutting
,
J. Appl. Phys.
68
,
2916
(
1990
).
3.
X.
Yao
,
Z. L.
Chen
, and
L. E.
Cross
,
J. Appl. Phys.
54
,
3399
(
1984
).
4.
S. H.
Wemple
,
M.
Didomenico
, Jr.
, and
I.
Camlibel
,
J. Phys. Chem. Solids
29
,
1797
(
1968
).
5.
C.
Lei
,
A. A.
Bokov
, and
Z. G.
Ye
,
J. Appl. Phys.
101
,
084105
(
2007
).
6.
S.
Anwar
,
P. R.
Sagdeo
, and
N. P.
Lalla
,
J. Phys.: Condens. Matter
18
,
3455
(
2006
).
7.
C.
Ang
,
Z.
Jing
, and
Z.
Yu
,
J. Phys.: Condens. Matter
14
,
8901
, (
2002
).
8.
Z.
Yu
,
C.
Ang
,
Z.
Jing
,
P. M.
Vilarinho
, and
J. L.
Baptista
,
J. Phys.: Condens. Matter
9
,
3081
(
1997
).
9.
J.
Ravez
and
A.
Simon
,
Eur. J. Solid State Inorg. Chem.
34
,
1199
(
1997
).
10.
J.
Ravez
and
A.
Simon
,
Eur. Phys. J.: Appl. Phys.
11
,
9
(
2000
).
11.
Z.
Yu
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
88
,
410
(
2000
).
12.
Z.
Yu
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
92
,
1489
(
2002
).
13.
Z.
Yu
,
C.
Ang
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
92
,
2655
(
2002
).
14.
J.
Kreisel
,
P.
Bouvier
,
M.
Maglione
,
B.
Dkhil
, and
A.
Simon
,
Phys. Rev. B
69
,
092104
(
2004
).
15.
C.
Laulhé
,
F.
Hippert
,
J.
Kreisel
,
M.
Maglione
,
A.
Simon
,
J. L.
Hazemann
, and
V.
Nassif
,
Phys. Rev. B
74
,
014106
(
2006
).
16.
M.
Nagasawa
,
H.
Kawaji
,
T.
Tojo
, and
T.
Atake
,
Phys. Rev. B
74
,
132101
(
2006
).
18.
M.
Meyar
and
L.
Taïbi-Benziada
,
J. Eur. Ceram. Soc.
27
,
1097
(
2007
).
19.
C.
Elissalde
,
A.
Simon
, and
J.
Ravez
,
Ferroelectrics
199
,
217
(
1997
).
20.
J.
Ravez
and
A.
Simon
,
J. Solid State Chem.
162
,
260
(
2001
).
21.
K.
Aliouane
,
M.
Hamadène
,
A.
Guehria-Laïdoudi
,
A.
Simon
, and
J.
Ravez
,
J. Fluorine Chem.
105
,
71
(
2000
).
22.
Y.
Akishige
,
T.
Michiie
, and
T.
Tsunogae
,
Ferroelectrics
269
,
249
(
2002
).
23.
Y.
Akishige
,
J. Phys. Soc. Jpn.
75
,
073704
(
2006
).
24.
J.
Xu
and
Y.
Akishige
,
Appl. Phys. Lett.
92
,
052902
(
2008
).
25.
B. L.
Chamberland
,
Mater. Res. Bull.
6
,
311
(
1971
).
26.
Y.
Inaguma
,
J. M.
Greneche
,
M. P.
Cronnier Lopez
,
T.
Katsumata
,
Y.
Calage
, and
J. L.
Fourquet
,
Chem. Mater.
17
,
1386
(
2005
).
27.
T.
Katsumata
,
A.
Takase
,
M.
Yoshida
,
Y.
Inaguma
,
J. E.
Greedan
,
J.
Barbier
,
L. M. D.
Cranswick
, and
M.
Bieringer
,
Mater. Res. Soc. Symp. Proc.
988
,
0988
QQ06
(
2007
).
28.
T.
Katsumata
,
M.
Nakahsima
,
H.
Umemoto
, and
Y.
Inaguma
,
J. Solid State Chem.
(in press).
29.
F.
Izumi
and
T.
Ikeda
,
Mater. Sci. Forum
198
,
321
(
2000
).
30.
K.
Uchino
,
S.
Nomura
,
L. E.
Cross
,
S. J.
Jang
, and
R. E.
Newnham
,
J. Appl. Phys.
51
,
1142
(
1980
).
You do not currently have access to this content.