Type-II InGaN–GaNAs quantum wells (QWs) with thin dilute-As (3%) GaNAs layer are analyzed self-consistently as improved III-nitride gain media for diode lasers. The band structure is calculated by using a six-band kp formalism, taking into account valence band mixing, strain effect, spontaneous and piezoelectric polarizations, as well as the carrier screening effect. The type-II InGaN–GaNAs QW structure allows large electron-hole wave function overlap by confining the hole wave function in the GaNAs layer of the QW. The findings based on self-consistent analysis indicate that type-II InGaN-GaNAs QW active region results in superior performance for laser diodes, in comparison to that of conventional InGaN QW. Both the spontaneous emission radiative recombination rate and optical gain of type-II InGaN–GaNAs QW structure are significantly enhanced. Reduction in the threshold current density of InGaN–GaNAs QW lasers is also predicted.

1.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
,
S.
Nagahama
,
T.
Yamada
, and
T.
Mukai
,
Jpn. J. Appl. Phys., Part 2
34
,
L1332
(
1995
).
2.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matshushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Appl. Phys., Part 2
35
,
L74
(
1996
).
3.
E. F.
Schubert
,
Light Emitting Diodes
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
2006
).
4.
S.
Nagahama
,
Y.
Sugimoto
,
T.
Kozaki
, and
T.
Mukai
,
Proceedings of SPIE Photonics West
,
San Jose, CA
, January
2005
.
5.
R. M.
Farrell
,
D. F.
Feezell
,
M. C.
Schmidt
,
D. A.
Haeger
,
K. M.
Kelchner
,
K.
Iso
,
H.
Yamada
,
M.
Saito
,
K.
Fujito
,
D. A.
Cohen
,
J. S.
Speck
,
S. P.
DenBaars
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 2
46
,
L761
(
2007
).
6.
J.
Park
and
Y.
Kawakami
,
Appl. Phys. Lett.
88
,
202107
(
2006
).
7.
S. H.
Park
,
J.
Park
, and
E.
Yoon
,
Appl. Phys. Lett.
90
,
023508
(
2007
).
8.
R. A.
Arif
,
Y. -K.
Ee
, and
N.
Tansu
,
Appl. Phys. Lett.
91
,
091110
(
2007
).
9.
R. A.
Arif
,
H.
Zhao
,
Y. -K.
Ee
, and
N.
Tansu
,
IEEE J. Quantum Electron.
44
,
573
(
2008
).
10.
R. A.
Arif
,
Y. -K.
Ee
, and
N.
Tansu
,
Phys. Status Solidi C
205
,
96
(
2008
).
11.
H.
Zhao
,
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
,
Opt. Quantum Electron.
40
(May
2008
).
12.
H.
Zhao
,
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
, in
Proceedings of the SPIE Photonics West 2008: Physics and Simulation of Optoelectronics Devices XVI
,
San Jose, CA
,
2008
, Vol.
6889
, p.
688903
.
13.
H.
Zhao
,
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
,
IEEE J. Quantum Electron.
44
(October
2008
).
14.
R. A.
Arif
,
H.
Zhao
, and
N.
Tansu
,
Appl. Phys. Lett.
92
,
011104
(
2008
).
15.
J. R.
Meyer
,
C. A.
Hoffman
,
F. J.
Bartoli
, and
L. R.
Ram-Mohan
,
Appl. Phys. Lett.
67
,
757
(
1995
).
16.
I.
Vurgaftman
,
C. L.
Felix
,
W. W.
Bewley
,
D. W.
Stokes
,
R. E.
Bartolo
, and
J. R.
Meyer
,
Philos. Trans. R. Soc. London, Ser. A
359
,
489
(
2001
).
17.
N.
Tansu
and
L. J.
Mawst
,
IEEE J. Quantum Electron.
39
,
1205
(
2003
).
18.
I.
Vurgaftman
,
J. R.
Meyer
,
N.
Tansu
, and
L. J.
Mawst
,
Appl. Phys. Lett.
83
,
2742
(
2003
).
19.
J. Y.
Yeh
,
L. J.
Mawst
,
A. A.
Khandekar
,
T. F.
Kuech
,
J. R.
Meyer
,
I.
Vurgaftman
, and
N.
Tansu
,
Appl. Phys. Lett.
88
,
051115
(
2006
).
20.
I.
Vurgaftman
,
J. R.
Meyer
,
N.
Tansu
, and
L. J.
Mawst
,
J. Appl. Phys.
96
,
4653
(
2004
).
21.
S. L.
Chuang
and
C. S.
Chang
,
Semicond. Sci. Technol.
12
,
252
(
1997
).
22.
A.
Kimura
,
C. A.
Paulson
,
H. F.
Tang
, and
T. F.
Kuech
,
Appl. Phys. Lett.
84
,
1489
(
2004
).
23.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
J. D.
Denlinger
,
W.
Shan
,
J. W.
Ager
 III
,
A.
Kimura
,
H. F.
Tang
, and
T. F.
Kuech
,
Phys. Rev. B
70
,
115214
(
2004
).
24.
S. L.
Chuang
,
IEEE J. Quantum Electron.
32
,
1791
(
1996
).
25.
F.
Bernardini
and
V.
Fiorentini
,
Phys. Status Solidi B
216
,
391
(
1999
).
26.
J.
Piprek
,
Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation
(
Academic
,
London
,
2003
), p.
34
.
27.
J.
Wu
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
 III
,
S. X.
Li
,
E. E.
Haller
,
H.
Lu
, and
W. J.
Schaff
,
J. Appl. Phys.
94
,
4457
(
2003
).
28.
J.
Piprek
and
S.
Nakamura
,
IEE Proc.-J: Optoelectron.
149
,
145
(
2002
).
29.
I.
Vurgaftman
and
J. R.
Meyer
, in
Nitride Semiconductor Devices
, edited by
J.
Piprek
(
Wiley
,
New York
,
2007
), Chap. 2.
30.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
31.
Y. C.
Yeo
,
T. C.
Chong
,
M. F.
Li
, and
W. J.
Fan
,
J. Appl. Phys.
84
,
1813
(
1998
).
32.
H. Y.
Ryu
,
K. H.
Ha
,
S. N.
Lee
,
T.
Jang
,
J. K.
Son
,
H. S.
Paek
,
Y. J.
Sung
,
H. K.
Kim
,
K. S.
Kim
,
O. H.
Nam
,
Y. J.
Park
, and
J. I.
Shim
,
IEEE Photon. Technol. Lett.
19
,
1717
(
2007
).
33.
J.
Hader
,
J. V.
Moloney
,
A.
Thranhardt
, and
S. W.
Koch
, in
Nitride Semiconductor Devices
, edited by
J.
Piprek
(
Wiley
,
Weinheim, Germany
,
2007
), Chap. 7, p.
164
.
34.
W. W.
Chow
and
M.
Kneissl
,
J. Appl. Phys.
98
,
114502
(
2005
).
35.
Y. C.
Shen
,
G. O.
Mueller
,
S.
Watanabe
,
N. F.
Gardner
,
A.
Munkholm
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
141101
(
2007
).
You do not currently have access to this content.