We investigate the domain wall pinning behavior in Permalloy nanowires using experimental measurements and micromagnetic simulations. Planar nanowire structures were fabricated by electron beam lithography followed by thin-film deposition via thermal evaporation. The magnetization switching behavior of individual nanowires was measured using the magneto-optical Kerr effect. For symmetrical pinning structures such as the junction between a wider domain wall injection pad and a narrower nanowire, the domain wall depinning field increases as the wire width decreases, with the depinning field increasing rapidly for wires widths below 400 nm. For domain wall pinning at asymmetrical structures such as a notch, the magnitude of the depinning field appears relatively insensitive to notch geometry for triangular and rectangular notch structures, compared to the influence of the wire width. The domain wall depinning field from triangular notches increases as notch depth increases although this increase levels off at notch depths greater than approximately 60% wire width. The nature of domain wall pinning at asymmetrical notch structures is also sensitive to domain wall chirality.

1.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
2.
S. S. P.
Parkin
, U.S. Patent No.683 400 5 (
2004
).
3.
M.
Hayashi
,
L.
Thomas
,
C.
Rettner
,
R.
Moriya
,
X.
Jiang
, and
S. S. P.
Parkin
,
Phys. Rev. Lett.
97
,
207205
(
2006
).
4.
R. P.
Cowburn
,
D. A.
Allwood
,
G.
Xiong
, and
M. D.
Cooke
,
J. Appl. Phys.
91
,
6949
(
2002
).
5.
K. J.
Kirk
,
J. N.
Chapman
,
S.
McVitie
,
P. R.
Aitchison
, and
C. D. W.
Wilkinson
,
Appl. Phys. Lett.
75
,
3683
(
1999
).
6.
D. A.
Allwood
,
G.
Xiong
,
M. D.
Cooke
, and
R. P.
Cowburn
,
J. Phys. D
36
,
2175
(
2003
).
7.
http://math.nist.gov/oommf/
8.
To numerically calculate the domain wall equilibrium ground state energy per unit cross-sectional area following procedure was used. For a given wire width, a vortex domain wall was artificially introduced into a rectangular shaped element 10 nm thick and 6000 nm long and allowed to relax to its equilibrium configuration at zero applied field. A simulation was also performed with the wire at saturation, i.e., containing no domain wall. The energy of the domain wall was deduced by subtracting Etotal(wirecontainingdomainwall)Etotal(wireatsaturation) to account for magnetostatic energy associated with the flat end shapes of the nanowire element. This value was then divided by the cross-sectional area to normalize all domain wall energies relative to one another.
9.
R. D.
McMichael
and
M. J.
Donahue
,
IEEE Trans. Magn.
33
,
4167
(
1997
).
10.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
,
J. Magn. Magn. Mater.
290–291
,
750
(
2005
).
11.
Y.
Yokoyama
,
Y.
Suzuki
,
S.
Yuasa
,
K.
Ando
,
K.
Shigeto
,
T.
Shinjo
,
P.
Gogol
,
J.
Miltat
,
A.
Thiaville
,
T.
Ono
, and
T.
Kawagoe
,
J. Appl. Phys.
87
,
5618
(
2000
).
12.
M.
Klaui
,
H.
Ehrke
,
U.
Rudiger
,
T.
Kasama
,
R. E.
Dunin-Borkowski
,
D.
Backes
,
L. J.
Heyderman
,
C. A.F.
Vaz
,
J. A.C.
Bland
,
G.
Faini
,
E.
Cambril
, and
W.
Wernsdorfer
,
Appl. Phys. Lett.
87
,
102509
(
2005
).
13.
C. C.
Faulkner
,
M. D.
Cooke
,
D. A.
Allwood
,
D.
Petit
, and
D.
Atkinson
,
J. Appl. Phys.
95
,
6717
(
2004
).
14.
D.
Atkinson
,
D. S.
Eastwood
, and
L. K.
Bogart
,
Appl. Phys. Lett.
92
,
022510
(
2008
).
You do not currently have access to this content.