In order to correlate the molecular orientation of organic thin films with charge injection barriers at organic/metal interfaces, the electronic structure and molecular orientation of vacuum sublimed thin films of α,ω-dihexylsexithiophene (DH6T) on the substrates Ag(111), highly oriented pyrolytic graphite (HOPG), and tetratetracontane (TTC) precovered Ag(111) were investigated. Results from metastable atom electron spectroscopy, ultraviolet photoelectron spectroscopy, and x-ray diffraction were used to derive growth models (including molecular orientation and conformation) of DH6T on the different substrates. On Ag(111), DH6T exhibits a transition from lying molecules in the monolayer/bilayer range to almost standing upright molecules in multilayers. This is accompanied by a shift of the molecular energy levels to a lower binding energy by 0.65 eV with respect to the vacuum level. The unit cell of standing DH6T on lying DH6T on Ag(111) is estimated to be similar to the DH6T bulk phase. On HOPG, DH6T grows in the bulk phase with lying orientation, starting already from the monolayer coverage. DH6T on TTC precovered Ag(111) grows in an almost lying orientation and a conformation that allows a strong overlap of the hexyl chains of DH6T with the alkyl chains of TTC. In all cases, the electronic structure and, particulary, the ionization energy of DH6T is dependent on the orientation of DH6T, i.e., lying DH6T has higher ionization energy than standing DH6T.

1.
X. L.
Chen
,
A. J.
Lovinger
,
Z.
Bao
, and
J.
Sapjeta
,
Chem. Mater.
13
,
1341
(
2001
).
2.
P.
Sreearunothai
,
A. C.
Morteani
,
I.
Avilov
,
J.
Cornil
,
D.
Beljonne
,
R. H.
Friend
,
R. T.
Phillips
,
C.
Silva
, and
L. M.
Herz
,
Phys. Rev. Lett.
96
,
117403
(
2006
).
3.
N.
Koch
,
A.
Elschner
,
J.
Schwartz
, and
A.
Kahn
,
Appl. Phys. Lett.
82
,
2281
(
2003
).
4.
H.
Sirringhaus
,
P. J.
Brown
,
R. H.
Friend
,
M. M.
Nielsen
,
K.
Bechgaard
,
B. M. W.
Langeveld-Voss
,
A. J. H.
Spiering
,
R. A. J.
Janssen
,
E. W.
Meijer
,
P.
Herwig
, and
D. M.
de Leeuw
,
Nature (London)
401
,
685
(
1999
).
5.
G.
Witte
and
C.
Wöll
,
J. Mater. Res.
19
,
1889
(
2004
).
6.
D. E.
Hooks
,
T.
Fritz
, and
M. D.
Ward
,
Adv. Mater. (Weinheim, Ger.)
13
,
227
(
2001
).
7.
N.
Koch
,
ChemPhysChem
8
,
1438
(
2007
).
8.
A.
Kahn
,
N.
Koch
, and
W. Y.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
9.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater. (Weinheim, Ger.)
11
,
605
(
1999
).
10.
N.
Koch
,
I.
Salzmann
,
R. L.
Johnson
,
J.
Pflaum
,
R.
Friedlein
, and
J. P.
Rabe
,
Org. Electron.
7
,
537
(
2006
).
11.
H.
Fukagawa
,
H.
Yamane
,
T.
Kataoka
,
S.
Kera
,
M.
Nakamura
,
K.
Kudo
, and
N.
Ueno
,
Phys. Rev. B
73
,
245310
(
2006
).
12.
J.
Ivanco
,
B.
Winter
,
F. P.
Netzer
, and
M. G.
Ramsey
,
Adv. Mater. (Weinheim, Ger.)
15
,
1812
(
2003
).
13.
S.
Duhm
,
H.
Glowatzki
,
J. P.
Rabe
,
N.
Koch
, and
R. L.
Johnson
,
Appl. Phys. Lett.
88
,
203109
(
2006
).
14.
S.
Duhm
,
G.
Heimel
,
I.
Salzmann
,
H.
Glowatzki
,
R. L.
Johnson
,
A.
Vollmer
,
J. P.
Rabe
, and
N.
Koch
,
Nat. Mater.
7
,
326
(
2008
).
15.
N.
Koch
and
A.
Vollmer
,
Appl. Phys. Lett.
89
,
162107
(
2006
).
16.
H.
Fukagawa
,
S.
Kera
,
T.
Kataoka
,
S.
Hosoumi
,
Y.
Watanabe
,
K.
Kudo
, and
N.
Ueno
,
Adv. Mater. (Weinheim, Ger.)
19
,
665
(
2007
).
17.
M.
Halik
,
H.
Klauk
,
U.
Zschieschang
,
G.
Schmid
,
S.
Ponomarenko
,
S.
Kirchmeyer
, and
W.
Weber
,
Adv. Mater. (Weinheim, Ger.)
15
,
917
(
2003
).
18.
J. -O.
Vogel
,
I.
Salzmann
,
R.
Opitz
,
S.
Duhm
,
B.
Nickel
,
J. P.
Rabe
, and
N.
Koch
,
J. Phys. Chem. B
111
,
14097
(
2007
).
19.
F.
Garnier
,
A.
Yassar
,
R.
Hajlaoui
,
G.
Horowitz
,
F.
Deloffre
,
B.
Servet
,
S.
Ries
, and
P.
Alnot
,
J. Am. Chem. Soc.
115
,
8716
(
1993
).
20.
C. E.
Heiner
,
J.
Dreyer
,
I. V.
Hertel
,
N.
Koch
,
H. -H.
Ritze
,
W.
Widdra
, and
B.
Winter
,
Appl. Phys. Lett.
87
,
093501
(
2005
).
21.
G.
Yoshikawa
,
M.
Kiguchi
,
S.
Ikeda
, and
K.
Saiki
,
Surf. Sci.
559
,
77
(
2004
).
22.
Y.
Harada
,
S.
Masuda
, and
H.
Ozaki
,
Chem. Rev. (Washington, D.C.)
97
,
1897
(
1997
).
23.
S.
Kera
,
H.
Setoyama
,
M.
Onoue
,
K. K.
Okudaira
,
Y.
Harada
, and
N.
Ueno
,
Phys. Rev. B
63,
115204
(
2001
).
24.
M.
Yamamoto
,
Y.
Sakurai
,
Y.
Hosoi
,
H.
Ishii
,
K.
Kajikawa
,
Y.
Ouchi
, and
K.
Seki
,
J. Phys. Chem. B
104
,
7370
(
2000
).
25.
E.
Ito
,
H.
Oji
,
H.
Ishii
,
K.
Oichi
,
Y.
Ouchi
, and
K.
Seki
,
Chem. Phys. Lett.
287
,
137
(
1998
).
26.
H.
Yamane
,
H.
Fukagawa
,
S.
Nagamatsu
,
M.
Ono
,
S.
Kera
,
K. K.
Okudaira
, and
N.
Ueno
,
IPAP Conf. Ser.
6,
19
(
2005
).
27.
S.
Schiefer
,
M.
Huth
,
A.
Dobrinevski
, and
B.
Nickel
,
J. Am. Chem. Soc.
129
,
10316
(
2007
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
29.
Often the IE is defined by the difference of the vacuum level and the HOMO onset. However, to allow for a better comparability of the values found on the different substrates irrespective of the broadening of the HOMO peaks, we have chosen a different definition in this work.
30.
S.
Masuda
,
H.
Hayashi
, and
Y.
Harada
,
Phys. Rev. B
42
,
3582
(
1990
).
31.
T.
Takahashi
,
H.
Tokailin
, and
T.
Sagawa
,
Phys. Rev. B
32
,
8317
(
1985
).
32.
H.
Kiessig
,
Ann. Phys.
-Berlin
402
,
769
(
1931
).
33.
B.
Servet
,
S.
Ries
,
M.
Trotel
,
P.
Alnot
,
G.
Horowitz
, and
F.
Garnier
,
Adv. Mater. (Weinheim, Ger.)
5
,
461
(
1993
).
34.
J.
Bernstein
,
J. A. R. P.
Sarma
, and
A.
Gavezzotti
,
Chem. Phys. Lett.
174
,
361
(
1990
).
35.
T.
Siegrist
,
R. M.
Fleming
,
R. C.
Haddon
,
R. A.
Laudise
,
A. J.
Lovinger
,
H. E.
Katz
,
P.
Bridenbaugh
, and
D. D.
Davis
,
J. Mater. Res.
10
,
2170
(
1995
).
36.
G.
Horowitz
,
B.
Bachet
,
A.
Yassar
,
P.
Lang
,
F.
Demanze
,
J. -L.
Fave
, and
F.
Garnier
,
Chem. Mater.
7
,
1337
(
1995
).
37.
We exclude that the reflections found in GID stem from lying DH6T molecules since (i) the corresponding lattice spacings are far below the extensions of the DH6T molecule and (ii) no peak at low momentum transfer could be observed.
38.
C. C.
Mattheus
,
G. A.
de Wijs
,
R. A.
de Groot
, and
T. T. M.
Palstra
,
J. Am. Chem. Soc.
125
,
6323
(
2003
).
39.
M.
Oehzelt
,
R.
Resel
,
C.
Suess
,
R.
Friedlein
, and
W. R.
Salaneck
,
J. Chem. Phys.
124
,
054711
(
2006
).
40.
D.
Nabok
,
P.
Puschnig
,
C.
Ambrosch-Draxl
,
O.
Werzer
,
R.
Resel
, and
D. -M.
Smilgies
,
Phys. Rev. B
76
,
235322
(
2007
).
41.
M.
Moret
,
M.
Campione
,
A.
Borghesi
,
L.
Miozzo
,
A.
Sassella
,
S.
Trabattoni
,
B.
Lotz
, and
A.
Thierry
,
J. Mater. Chem.
15
,
2444
(
2005
).
42.
X. T.
Hao
,
T.
Hosokai
,
N.
Mitsuo
,
S.
Kera
,
K.
Mase
,
K. K.
Okudaira
, and
N.
Ueno
,
Appl. Phys. Lett.
89
,
182113
(
2006
).
43.
F.
Biscarini
,
R.
Zamboni
,
P.
Samorí
,
P.
Ostoja
, and
C.
Taliani
,
Phys. Rev. B
52
,
14868
(
1995
).
44.
M. A.
Loi
,
E.
Da Como
,
F.
Dinelli
,
M.
Murgia
,
R.
Zamboni
,
F.
Biscarini
, and
M.
Muccini
,
Nat. Mater.
4
,
81
(
2005
).
45.
R.
Ruiz
,
D.
Choudhary
,
B.
Nickel
,
T.
Toccoli
,
K. -C.
Chang
,
A. C.
Mayer
,
P.
Clancy
,
J. M.
Blakely
,
R. L.
Headrick
,
S.
Iannotta
, and
G. G.
Malliaras
,
Chem. Mater.
16
,
4497
(
2004
).
46.
H.
Glowatzki
,
S.
Duhm
,
K. -F.
Braun
,
J. P.
Rabe
, and
N.
Koch
,
Phys. Rev. B
76
,
125425
(
2007
).
47.
A.
Stabel
and
J. P.
Rabe
,
Synth. Met.
67
,
47
(
1994
).
48.
M.
Kiel
,
K.
Duncker
,
C.
Hagendorf
, and
W.
Widdra
,
Phys. Rev. B
75
,
195439
(
2007
).
49.
H.
Ozaki
and
Y.
Harada
,
J. Am. Chem. Soc.
112
,
5735
(
1990
).
50.
S. P.
Chenakin
,
B.
Heinz
, and
H.
Morgner
,
Surf. Sci.
397
,
84
(
1998
).
You do not currently have access to this content.