We have investigated radio-frequency single-electron transistor operation of single-walled carbon nanotube quantum dots in the strong tunneling regime. At a temperature of 4.2 K and with a carrier frequency of 754.2 MHz, we reach a charge sensitivity of 2.3×106e/Hz over a bandwidth of 85 MHz. Our results indicate a gain-bandwidth product of 3.7×1013Hz(3/2)/e, which is by one order of magnitude better than those for typical radio-frequency single-electron transistors.

1.
See, e.g.,
K. K.
Likharev
,
Proc. IEEE
87
,
606
(
1999
).
2.
B.
Starmark
,
T.
Henning
,
T.
Claeson
,
P.
Delsing
, and
A. N.
Korotkov
,
J. Appl. Phys.
86
,
2132
(
1999
).
3.
V. A.
Krupenin
,
D. E.
Presnov
,
M. N.
Savvateev
,
H.
Scherer
,
A. B.
Zorin
, and
J.
Niemeyer
,
J. Appl. Phys.
84
,
3212
(
1998
).
4.
R. J.
Schoelkopf
,
P.
Wahlgren
,
A. A.
Kozhevnikov
,
P.
Delsing
, and
D. E.
Prober
,
Science
280
,
1238
(
1998
).
5.
D. V.
Averin
, in
Macroscopic Quantum Coherence and Quantum Computing
, edited by
D. V.
Averin
,
B.
Ruggiero
, and
P.
Silvestrini
(
Kluwer
,
New York
,
2001
), pp.
399
408
;
6.
M. H.
Devoret
and
R. J.
Schoelkopf
,
Nature (London)
406
,
1039
(
2000
).
7.
X.
Wang
,
R.
Egger
, and
H.
Grabert
,
Europhys. Lett.
38
,
545
(
1997
).
8.
P.
Wahlgren
, Ph.D. thesis,
Chalmers University of Technology
,
1998
.
9.
H.
Brenning
,
S.
Kafanov
,
T.
Duty
,
S.
Kubatkin
, and
P.
Delsing
,
J. Appl. Phys.
100
,
114321
(
2006
).
10.
S. J.
Tans
,
M. H.
Devoret
,
H.
Dai
,
A.
Thess
,
R. E.
Smalley
,
L. J.
Geerligs
, and
C.
Dekker
,
Nature (London)
386
,
474
(
1997
).
11.
M.
Bockrath
,
D. H.
Cobden
,
P. L.
McEuen
,
N. G.
Chopra
,
A.
Zettl
,
A.
Thess
, and
R. E.
Smalley
,
Science
275
,
1922
(
1997
).
12.
J.
Nygård
,
D. H.
Cobden
,
M.
Bockrath
,
P. L.
McEuen
, and
P. E.
Lindelof
,
Appl. Phys. A: Mater. Sci. Process.
69
,
297
(
1999
).
13.
A.
Javey
,
J.
Guo
,
Q.
Wang
,
M.
Lundstrom
, and
H.
Dai
,
Nature (London)
424
,
654
(
2003
).
14.
F.
Wu
,
P.
Queipo
,
A.
Nasibulin
,
T.
Tsuneta
,
T. H.
Wang
,
E.
Kauppinen
, and
P. J.
Hakonen
,
Phys. Rev. Lett.
99
,
156803
(
2007
).
15.
L.
Roschier
,
M.
Sillanpää
,
W.
Taihong
,
M.
Ahlskog
,
S.
Iijima
, and
P.
Hakonen
,
J. Low Temp. Phys.
136
,
465
(
2004
).
16.
M. J.
Biercuk
,
D. J.
Reilly
,
T. M.
Buehler
,
V. C.
Chan
,
J. M.
Chow
,
R. G.
Clark
, and
C. M.
Marcus
,
Phys. Rev. B
73
,
201402
(
2006
).
17.
Y.
Tang
,
I.
Amlani
,
A. O.
Orlov
,
G. L.
Snider
, and
P. J.
Fay
,
Nanotechnology
18
,
445203
(
2007
).
18.
J.
Kong
,
H. T.
Soh
,
A. M.
Cassell
,
C. F.
Quate
, and
H.
Dai
,
Nature (London)
395
,
878
(
1998
).
19.
K.
Grove-Rasmussen
,
H. I.
Jørgensen
, and
P. E.
Lindelof
, in
Controllable Quantum States, Mesoscopic Superconductivity and Spintronics
, edited by
H.
Takayanagi
,
J.
Nitta
, and
H.
Nakano
(
World Scientific
,
Singapore
,
2007
);
20.
F.
Wu
,
L.
Roschier
,
T.
Tsuneta
,
M.
Paalanen
,
T.
Wang
, and
P.
Hakonen
,
AIP Conf. Proc.
850
,
1482
(
2006
).
21.
L.
Roschier
and
P.
Hakonen
,
Cryogenics
44
,
783
(
2004
).
22.
A. N.
Korotkov
and
M. A.
Paalanen
,
Appl. Phys. Lett.
74
,
4052
(
1999
).
23.
L.
Roschier
,
P.
Hakonen
,
K.
Bladh
,
P.
Delsing
,
K. W.
Lehnert
,
L.
Spietz
, and
R. J.
Schoelkopf
,
J. Appl. Phys.
95
,
1274
(
2004
).
24.
V. O.
Turin
and
A. N.
Korotkov
,
Appl. Phys. Lett.
83
,
2898
(
2003
).
25.
V. O.
Turin
and
A. N.
Korotkov
,
Phys. Rev. B
69
,
195310
(
2004
).
26.

By studying the Coulomb diamond pattern around the optimum sensitivity, we deduce that ECΔEN and ΔEN3kBT. This suggests that we are in the quantum Coulomb blockade (QCB) regime, where kBTΔEN<2EC and only few levels are involved in transport. However, comparing the conductance peak line shapes around optimum sensitivity with theory (Ref. 30), we find deviations between the experimental data and QCB predictions. From the experimental data we get GN=G/G0.45 at peak maximum and dGN/dVG10V1 as optimum transconductance. These values should be compared to GN0.75 and dGN/dVG40V1 as predicted by theory. Also the predictions from the metallic Coulomb blockade regime with GN0.5 and dGN/dVG20V1 are deviating, but the peak maximum is close to the measured. This discrepancy is explained by the fact that we are in the strong tunneling regime with RQ/RΣ2.5, which broadens the energy levels. Since we still have strong Coulomb blockade, we are not quite in the Breit–Wigner limit but rather in an intermediate regime kBT<hΓΔEN<2EC, which behaves closest to the strong tunneling description.

27.
H. A.
Nilsson
,
T.
Duty
,
S.
Abay
,
C.
Wilson
,
J. B.
Wagner
,
C.
Thelander
,
P.
Delsing
, and
L.
Samuelson
,
Nano Lett.
8
,
872
(
2008
).
28.
S. J.
Angus
,
A. J.
Ferguson
,
A. S.
Dzurak
, and
R. G.
Clark
,
Appl. Phys. Lett.
92
,
112103
(
2008
).
29.
Y.
Hu
,
H. O. H.
Churchill
,
D. J.
Reilly
,
J.
Xiang
,
C. M.
Lieber
, and
C. M.
Marcus
,
Nat. Nanotechnol.
2
,
622
(
2007
).
30.
C. W. J.
Beenakker
,
Phys. Rev. B
44
,
1646
(
1991
).
You do not currently have access to this content.