Vitreous SiO2 thin films thermally grown onto Si wafers were bombarded by Au ions with energies from 0.005 to 11.1 MeV/u and by ions at constant velocity (0.1 MeV/u A197u, T130e, A75s, S32, and F19). Subsequent chemical etching produced conical holes in the films with apertures from a few tens to 150nm. The diameter and the cone angle of the holes were determined as a function of energy loss of the ions. Preferential track etching requires a critical electronic stopping power Seth2keV/nm, independent of the value of the nuclear stopping. However, homogeneous etching, characterized by small cone opening angles and narrow distributions of pore sizes and associated with a continuous trail of critical damage, is only reached for Se>4keV/nm. The evolution of the etched-track dimensions as a function of specific energy (or electronic stopping force) can be described by the inelastic thermal spike model, assuming that the etchable track results from the quenching of a zone which contains sufficient energy for melting. The model correctly predicts the threshold for the appearance of track etching Seth if the radius of the molten region has at least 1.6 nm. Homogeneous etching comes out only for latent track radii larger than 3 nm.

1.
R. L.
Fleischer
,
P.
Price
, and
R. M.
Walker
,
Nuclear Tracks in Solids
(
University of California
,
Berkeley
,
1975
).
2.
R.
Spohr
,
Ion Tracks and Microtechnology
(
Vieweg
,
Braunshweig
,
1990
).
3.
P. Y.
Apel
and
D.
Fink
, in
Transport Processes in Ion: Irradiated Polymers
, edited by
D.
Fink
(
Springer
,
Berlin
,
2004
).
4.
K.
Awazu
,
S.
Ishii
,
K.
Shima
,
S.
Roorda
, and
J. L.
Brebner
,
Phys. Rev. B
62
,
3689
(
2000
).
5.
C.
Milanez Silva
,
P.
Varisco
,
A.
Moehlecke
,
P. F. P.
Fichtner
,
R. M.
Papaléo
, and
J.
Eriksson
,
Nucl. Instrum. Methods Phys. Res. B
206
,
486
(
2003
).
6.
J.
Jensen
,
A.
Razpet
,
M.
Skupinski
, and
G.
Possnert
,
Nucl. Instrum. Methods Phys. Res. B
246
,
119
(
2006
);
J.
Jensen
,
A.
Razpet
,
M.
Skupinski
, and
G.
Possnert
,
Nucl. Instrum. Methods Phys. Res. B
245
,
269
(
2006
).
7.
S.
Klaumünzer
,
Nucl. Instrum. Methods Phys. Res. B
225
,
136
(
2004
).
8.
M.
Toulemonde
,
N.
Enault
,
J. Y.
Fan
, and
F.
Studer
,
J. Appl. Phys.
68
,
1545
(
1990
).
9.
C. C.
Rotaru
, Ph.D. thesis,
University of Caen
,
2004
;
10.
A.
Sigrist
and
R.
Balzer
,
Helv. Phys. Acta
50
,
49
(
1977
).
11.
S.
Kumar
,
S.
Chander
,
J. S.
Yadav
, and
A. P.
Sharma
,
Nucl. Instrum. Methods Phys. Res. A
226
,
506
(
1984
).
12.
Ch.
Houpert
,
F.
Studer
,
D.
Groult
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
39
,
720
(
1989
).
13.
M.
Toulemonde
,
S.
Bouffard
, and
F.
Studer
,
Nucl. Instrum. Methods Phys. Res. B
91
,
108
(
1994
).
14.
C.
Trautmann
,
R.
Spohr
, and
S.
Bouffard
,
Nucl. Instrum. Methods Phys. Res. B
116
,
429
(
1996
).
15.
R. A. B.
Devine
,
Nucl. Instrum. Methods Phys. Res. B
91
,
378
(
1994
).
16.
M. C.
Busch
,
A.
Slaoui
,
P.
Siffert
,
E.
Dooryhee
, and
M.
Toulemonde
,
J. Appl. Phys.
71
,
2596
(
1992
).
17.
K.
Awazu
and
H.
Kawazoe
,
J. Appl. Phys.
94
,
6243
(
2003
).
18.
R. G.
Musket
,
J. M.
Yoshiyama
,
R. J.
Contolini
, and
J. D.
Porter
,
J. Appl. Phys.
91
,
5760
(
2002
).
19.
F.
Bergamini
,
M.
Bianconi
, and
S.
Cristiani
,
Nucl. Instrum. Methods Phys. Res. B
257
,
593
(
2007
).
20.
M.
Toulemonde
,
C.
Dufour
,
A.
Meftah
, and
E.
Paumier
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
903
(
2000
).
21.
W.
Kern
,
J. Electrochem. Soc.
1887–1891
,
137
(
1990
).
22.
J.
Jokinen
,
Nucl. Instrum. Methods Phys. Res. B
124
,
447
(
1997
).
23.
P.
Grande
and
G.
Schiwietz
,
Phys. Rev. A
58
,
3796
(
1998
).
24.
N. R.
Arista
,
Nucl. Instrum. Methods Phys. Res. B
195
,
91
(
2002
).
26.
T.
Van Dillen
,
E.
Snoeks
,
W.
Fukarek
,
C. M.
van Kats
,
K. P.
Velikov
,
A.
van Blaaderen
, and
A.
Polman
,
Nucl. Instrum. Methods Phys. Res. B
175–177
,
350
(
2001
).
27.
T.
van Dillen
,
A.
Polman
,
C. M.
van Kats
, and
A.
van Blaadaren
,
Appl. Phys. Lett.
83
,
4315
(
2003
).
28.
A.
Albers
,
K.
Wien
,
P.
Dück
,
W.
Treu
, and
H.
Voit
,
Nucl. Instrum. Methods Phys. Res. B
198
,
69
(
1982
).
29.
R. M.
Papaléo
, in
Fundamentals of Ion Irradiated Polymers
, edited by
D.
Fink
(
Springer-Verlag
,
Berlin
,
2004
), pp.
207
250
.
30.
G.
Kraft
, in
Terrestrial Space Radiation and Its Biological Effects
, edited by
P. D.
McCormick
,
C. E.
Swenberg
, and
H.
Bücker
(
Plenum
,
New York
,
1988
), pp.
163
184
.
31.
A.
Meftah
,
F.
Brisard
,
J. M.
Costantini
,
M.
Hage-Ali
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Phys. Rev. B
48
,
920
(
1993
).
32.
A.
Meftah
,
J. M.
Costantini
,
N.
Khalfaoui
,
S.
Boudjadar
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
237
,
563
(
2005
).
33.
M.
Toulemonde
,
W.
Assmann
,
C.
Dufour
,
A.
Meftah
,
F.
Studer
, and
C.
Trautmann
,
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
52
,
263
(
2006
).
34.
C.
Dufour
,
A.
Audouard
,
F.
Beneu
,
J.
Dural
,
A.
Hairie
,
M.
Levalois
,
E.
Paumier
, and
M.
Toulemonde
,
J. Phys.: Condens. Matter
5
,
4573
(
1993
).
35.
Z. G.
Wang
,
C.
Dufour
,
E.
Paumier
, and
M.
Toulemonde
,
J. Phys.: Condens. Matter
6
,
6733
(
1994
).
36.
A.
Meftah
,
F.
Brisard
,
J. M.
Costantini
,
E.
Dooryhee
,
M.
Hage-Ali
,
M.
Hervieu
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Phys. Rev. B
49
,
12457
(
1994
).
37.
P.
Sigmund
,
Appl. Phys. Lett.
25
,
169
(
1974
);
P.
Sigmund
,
Appl. Phys. Lett.
27
,
52
(
1975
).
38.
F.
Studer
,
M.
Hervieu
,
J. M.
Costantini
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
122
,
449
(
1997
).
39.
C.
Trautmann
,
C.
Dufour
,
E.
Paumier
,
R.
Spohr
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
107
,
397
(
1996
).
40.
A.
Benyagoub
,
S.
Loffler
,
M.
Rammensee
,
S.
Klaumünzer
, and
G.
Saemann-Ischenko
,
Nucl. Instrum. Methods Phys. Res. B
65
,
228
(
1992
).
41.
E.
Dartyge
and
P.
Sigmund
,
Phys. Rev. B
32
,
5429
(
1985
).
42.
T. A.
Tombrello
Nucl. Instrum. Methods Phys. Res. B
94
,
424
(
1994
).
You do not currently have access to this content.