The void growth and drift motion induced by the combined actions of the phase transformation (evaporation and condensation) and surface drift diffusion driven by the capillary and electromigration forces and thermal-stress gradients are investigated in passivated metallic thin films and flip-chip solder joints via computer simulation using the front-tracking method. As far as the device reliability is concerned, the most critical configuration for solder joint failure occurs even when thermal stresses are low if the void nucleation takes place close to the under bump metallurgy (UBM) where the heat and current flux crowding takes place due to the proximity effect associated with the confinement. The void growth induced by the condensation of excess (athermal) vacancies at the void-matrix dividing surface results in drastic spreading of pre-existing voids along transverse direction of solder joint due to the concurrently occurring heat and current crowding adjacent to the UBM. This accelerated transverse void spreading may eventually cause open-circuit interconnect failure as clearly demonstrated experimentally in literature.

1.
J.
Ida
,
Dig. Tech. Pap. - Symp. VLSI Technol.
1994
,
59
.
2.
Z.
Suo
,
Adv. Appl. Mech.
33
,
193
(
1997
).
3.
R. E.
Jones
and
M. L.
Basehore
,
Appl. Phys. Lett.
50
,
725
(
1987
).
4.
B.
Greenebaum
,
A. I.
Sauter
,
P.
Filinn
, and
W. D.
Nix
,
Appl. Phys. Lett.
58
,
1845
(
1991
).
5.
M. A.
Korhonen
,
C. A.
Paszkiet
, and
C. -Y.
Li
,
J. Appl. Phys.
72
,
32
(
1992
).
6.
L.
Arnaud
,
T.
Berger
, and
G.
Reimbold
,
J. Appl. Phys.
93
,
192
(
2003
).
7.
H.
Wang
,
C.
Bruynseraede
, and
K.
Maex
,
Appl. Phys. Lett.
84
,
517
(
2004
).
8.
H. V.
Nguyen
,
C.
Salm
,
B.
Krabbenborg
,
K. W.
–Zaage
,
J.
Bisschop
,
A. J.
Mouthaan
, and
F. G.
Kuper
,
Proceedings of the IEEE Reliability Physics Symposium
,
2004
(unpublished), p.
619
.
9.
C. M.
Tan
and
A.
Roy
,
Thin Solid Films
504
,
288
(
2006
).
10.
T. O.
Ogurtani
,
Phys. Rev. B
74
,
155422
(
2006
).
11.
W.
Roush
and
J.
Jaspal
,
Proceedings of the Electronic Components 32nd Conference
,
San Diego, CA
,
1982
(unpublished), p.
342
.
12.
A. T.
Huang
,
K. N.
Tu
, and
Y. -S.
Lai
,
J. Appl. Phys.
100
,
033512
(
2006
).
13.
H.
Ye
,
C.
Basaran
, and
D. C.
Hopkins
,
Appl. Phys. Lett.
82
,
1045
(
2003
).
14.
C.
Basaran
,
H.
Ye
,
D. C.
Hopkins
,
D.
Fear
, and
J. K.
Lin
,
J. Electron. Packag.
127
,
157
(
2005
).
15.
S. C.
Ho
,
T.
Hehemkamp
, and
H. B.
Huntington
,
Phys. Chem. Solids
26
,
251
(
1965
).
16.
H. B.
Huntington
,
Phys. Chem. Solids
29
,
1641
(
1968
).
17.
V.
Sukharev
,
E.
Zschech
, and
W. D.
Nix
,
J. Appl. Phys.
102
,
053505
(
2007
).
18.
K. N.
Tu
,
J. Appl. Phys.
94
,
5451
(
2003
).
19.
L.
Xu
,
J. H. L.
Pang
, and
K. N.
Tu
,
Appl. Phys. Lett.
89
,
221909
(
2006
).
20.
Y. H.
Lin
,
Y. C.
Hu
,
C. M.
Tsai
,
C. R.
Kao
and
K. N.
Tu
,
Acta Mater.
53
,
2029
(
2005
).
21.
Y. C.
Fung
,
Foundation of Solid Mechanics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
), p.
385
.
22.
H.
Ye
,
C.
Basaran
, and
D. C.
Hopkins
,
Int. J. Solids Struct.
41
,
4939
(
2004
).
23.
E.
Kröner
,
Kontinuumstheorie der Versetzungen und Eigenspannungen
(
Springer
,
Berlin
,
1958
).
24.
J. D.
Eshelby
,
The Continuum Theory of Lattice Defects
,
Solid State Physics
Vol.
3
(
Academic
,
New York
,
1960
), p.
108
.
25.
L.
Tewordt
,
Phys. Rev.
109
,
61
(
1958
).
26.
A.
Seeger
and
E.
Mann
,
J. Phys. Chem. Solids
12
,
326
(
1960
).
27.
R. A.
Johnson
and
E.
Brown
,
Phys. Rev.
127
,
446
(
1962
).
28.
R.
Kirchheim
,
Acta Metall. Mater.
40
,
309
(
1992
).
29.
C. J.
Smithells
,
Metals Reference Book
(
Butterworths
,
London
,
1967
), Vol.
III
, pp.
686
708
.
30.
M. G.
Pecht
,
R.
Agarwal
,
P.
McCluskey
,
T.
Dishong
,
S.
Javadpour
, and
R.
Mahajan
,
Electronic Packaging Materials and Their Properties
(
CRC
,
New York
,
1998
).
31.
P. S.
Ho
,
J. Appl. Phys.
41
,
64
(
1970
).
32.
G.
Beer
and
J. O.
Watson
,
Introduction to Finite and Boundary Element Methods for Engineers
(
Wiley
,
New York
,
1992
), p.
151
.
33.
W. J.
Choi
,
E. C. C.
Yeh
, and
K. N.
Tu
,
J. Appl. Phys.
94
,
5665
(
2003
).
34.
M. R.
Gungor
and
D.
Maroudas
,
J. Appl. Phys.
101
,
063513
(
2007
).
35.
Y. H.
Lin
,
Y. C.
Hu
,
C. M.
Tsai
,
C. R.
Kao
, and
K. N.
Tu
,
Acta Mater.
53
,
2029
(
2005
).
36.
T. O.
Ogurtani
and
E. E.
Oren
,
Int. J. Solids Struct.
42
,
3918
(
2005
).
37.
T. O.
Ogurtani
,
Phys. Rev. B
73
,
235408
(
2006
).
39.
D. J.
Srolovitz
,
Acta Metall.
37
,
621
(
1989
).
40.
C. E.
Weatherburn
,
Advanced Vector Analysis
(
Bell
,
London
,
1954
), p.
140
.
41.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Harper & Row
,
New York
,
1963
), p.
160
.
42.
W.
Gibbs
,
The Collected Works of J. Willard Gibbs
,
Thermodynamics
Vol.
I
(
Yale University Press
,
New Haven, CT
,
1948
).
43.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
90
,
1564
(
2001
).
44.
A. S.
Nowich
and
B. S.
Berry
,
Anelastic Relaxation in Crystalline Solids
(
Academic
,
New York
,
1972
), p.
189
.
You do not currently have access to this content.