The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not only the usual elastic strain energy density contribution but also the elastic dipole tensor interaction (EDTI) between the thermal-stress field and the mobile atomic species (monovacancies) are considered using the concept of elastic interaction energy promoted in unified linear instability analysis (ULISA) [T. O. Ogurtani, Phys. Rev. B74, 155422 (2006)]. According to extensive computer experiments performed on voids, which are initially cylindrical in shape, two completely different and topographically distinct behaviors are observed during the development of quasistationary state void surface morphologies, even in the presence of strong EM forces. These behaviors strictly depend on whether or not heat flux crowding occurs in the regions between the void surface layer and the sidewalls of the interconnect lines due to proximity effects of the insulating boundaries. In both morphological cases, however, one also observes two well-defined regimes, namely, the EM and TSG dominated regimes in EM versus EDTI parametric space. In the case of the TSG dominated regime, the void center of gravity (centroid) exhibits uniform displacement (drift) velocity proportional and opposite to the induced TSG exactly as predicted by ULISA theory. These domains are bounded by a threshold level curve for the EDTI parameter, above which an extremely sharp crack tip nucleation and propagation occurs in the highly localized minima in the triaxial stress regions (i.e., hot spots) surrounding the void surface layer and extending along the longitudinal and off-diagonal directions (flux crowding). The most critical configuration for interconnect failure occurs even when thermal stresses are low if the normalized ratio of interconnect width to void radius is less than 4 (which indicates the onset of heat flux crowding). In the absence of EM this regime manifests itself by the formation of two symmetrically disposed finger-shaped extrusions (pitchfork shaped slits) on the upper and lower shoulders of the void surface on the windward side. In later stages these slits extend with an almost 54° inclination toward the sidewalls, and eventually cause a fatal catastrophic interconnect breakdown due to growth by condensation of supersaturated vacancies in the bulk matrix. At high thermal-stress levels this morphology is replaced by the fracture mode of diffusive-crack formation and propagation. Outside of the heat flux crowding regime and below the TSG threshold levels, the void takes an egg shape pointed toward the high temperature region of the interconnect and steadily drifts against the heat flow (upstream direction) without causing any transgranular damage. Above the TSG threshold levels, however, these modes are replaced by a sharp crack formation regime with an accelerated propagation that may eventually cause open-circuit interconnect failure.

1.
T. O.
Ogurtani
,
Phys. Rev. B
74
,
155422
(
2006
).
2.
D.
Bedeaux
,
J. Chem. Phys.
120
,
3744
(
2004
).
3.
Y. D.
Shikhmurzaev
,
J. Fluid Mech.
334
,
211
(
1997
).
4.
Z.
Suo
,
Adv. Appl. Mech.
33
,
193
(
1997
).
5.
C.
Herring
,
The Physics of Powder Metallurgy
, edited by
W. E.
Kinston
(
McGraw-Hill
,
New York
,
1951
), p.
143
.
6.
J.
Von-Neumann
,
Metal Interfaces
(
American Society for Metals
,
Cleveland
,
1952
), p.
108
.
7.
W. W.
Mullins
,
J. Appl. Phys.
28
,
333
(
1957
).
8.
W.
Gibbs
,
The Collected Works of J. Willard Gibbs
,
Thermodynamics
Vol.
I
(
Yale University Press
,
New Haven
,
1948
), p.
226
.
9.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
90
,
1564
(
2001
).
10.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
96
,
7246
(
2004
).
11.
T. O.
Ogurtani
and
E. E.
Oren
,
Int. J. Solids Struct.
42
,
3918
(
2005
).
12.
T. O.
Ogurtani
,
J. Chem. Phys.
124
,
144706
(
2006
).
13.
J.
Krug
and
H. T.
Dobbs
,
Phys. Rev. Lett.
73
,
1947
(
1994
).
14.
M.
Schimschak
and
J.
Krug
,
Phys. Rev. Lett.
78
,
278
(
1997
).
15.
M.
Schimschak
and
J.
Krug
,
J. Appl. Phys.
87
,
695
(
2000
).
16.
M. R.
Gungor
and
D.
Maroudas
,
J. Appl. Phys.
85
,
2233
(
1999
).
17.
M. R.
Gungor
and
D.
Maroudas
,
Int. J. Fract.
109
,
47
(
2001
).
18.
O.
Kraft
,
U. E.
Möckl
, and
E.
Arzt
,
Qual. Reliab. Eng. Int
11
,
279
(
1995
).
19.
E. E.
Oren
and
T. O.
Ogurtani
,
Thin Films: Stresses and Mechanical Properties IX
,
MRS Symposia Proceedings
No. 695 (
Materials Research Society
,
Pittsburgh
,
2002
), p.
209
.
20.
A.
Averbuch
,
M.
Israeli
,
M.
Nathan
, and
I.
Ravve
,
J. Comput. Phys.
188
,
640
(
2003
).
21.
M.
Nathan
,
A.
Averbuch
, and
M.
Israel
,
Thin Solid Films
466
,
347
(
2004
).
22.
R. E.
Jones
and
M. L.
Basehore
,
Appl. Phys. Lett.
50
,
725
(
1987
).
23.
B.
Greenebaum
,
A. I.
Sauter
,
P.
Filinn
, and
W. D.
Nix
,
Appl. Phys. Lett.
58
,
1845
(
1991
).
24.
M. A.
Korhonen
,
C. A.
Paszkiet
, and
C. -Y.
Li
,
J. Appl. Phys.
72
,
32
(
1992
).
25.
Z.
Suo
and
W.
Wang
,
J. Appl. Phys.
76
,
3410
(
1994
).
26.
G.
Nicolis
and
I.
Prigogine
,
Exploring Complexity
(
Freeman
,
New York
,
1989
).
27.
D. N.
Bhate
,
A.
Kumar
, and
A. F.
Bower
,
J. Appl. Phys.
87
,
1712
(
2000
).
28.
D.
Fridline
and
A. F.
Bower
,
J. Appl. Phys.
85
,
3168
(
1999
).
29.
M. R.
Gungor
and
D.
Maroudas
,
J. Appl. Phys.
101
,
063513
(
2007
).
30.
R. J.
Asaro
and
W. A.
Tiller
,
Metall. Trans.
3
,
1789
(
1972
).
31.
E. A.
Guggenheim
,
Thermodynamics
, 3rd ed. (
North-Holland
,
Amsterdam
,
1959
), p.
46
.
32.
H. B.
Callen
,
Thermodynamics
(
Wiley
,
New York
,
1960
), p.
237
.
33.
H. H.
Yu
and
Z.
Suo
,
J. Appl. Phys.
87
,
1211
(
2000
).
34.
D. J.
Srolovitz
,
Acta Metall.
37
,
621
(
1989
).
35.
C.
Herring
,
J. Appl. Phys.
21
,
437
(
1950
).
36.
H.
Gao
, in
Modern Theory of Anisotropic Elasticity and Applications
, edited by
J. J.
Wu
,
T. C. T.
Ting
, and
D. M.
Barnett
(
SIAM
,
Philadelphia
,
1991
), p.
139
.
37.
N. I.
Muskhelishvili
,
Some Basic Problems of the Mathematical Theory of Elasticity
(
Noordhoff
,
Groningen, Holland
,
1953
), p.
104
.
38.
Y. G.
Shreter
,
D. V.
Tarkhin
,
S. A.
Khorev
, and
Y. T.
Rebane
,
Phys. Solid State
41
,
1295
(
1999
).
39.
C. M.
Tan
and
A.
Roy
,
Thin Solid Films
504
,
288
(
2006
).
40.
C. M.
Tan
,
A.
Roy
,
A. V.
Vairagar
,
A.
Krishnamoorthy
, and
S.
Mhaisalkar
,
IEEE Trans. Device Mater. Reliab.
5
,
198
(
2005
).
41.
D.
Dalleau
and
K.
Weide-Zaage
,
Microelectron. Reliab.
41
,
1625
(
2001
).
42.
Y. C.
Fung
,
Foundation of Solid Mechanics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
), p.
385
.
43.
C. M.
Tan
,
G.
Zhang
, and
Z.
Gan
,
IEEE Trans. Device Mater. Reliab.
4
,
450
(
2004
).
44.
L.
Xia
,
A. F.
Bower
,
Z.
Suo
, and
C. F.
Shih
,
J. Mech. Phys. Solids
45
,
1473
(
1997
).
45.
V.
Sukharev
,
E.
Zschech
, and
W. D.
Nix
,
J. Appl. Phys.
102
,
053505
(
2007
).
46.
M. E.
Sarychev
,
Yu. V.
Zhitnikov
,
L.
Borucki
,
C. -L.
Liu
, and
T. M.
Makhviladzew
,
J. Appl. Phys.
86
,
3068
(
1999
).
47.
E.
Kröner
,
Kontinuumstheorie der Versetzungen und Eigenspannungen
(
Springer
,
Berlin
,
1958
).
48.
J. D.
Eshelby
,
The Continuum Theory of Lattice Defects
,
Solid State Physics
Vol.
3
(
Academic
,
New York
,
1960
), p.
108
.
49.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
McGraw-Hill
,
New York
,
1968
), p.
458
.
50.
A. S.
Nowick
and
B. S.
Berry
,
Anelastic Relaxation in Crystalline Solids
(
Academic
,
New York
,
1972
), p.
189
.
51.
R.
Kirchheim
,
Acta Metall. Mater.
40
,
309
(
1992
).
52.
C.
Basaran
,
M.
Lin
, and
H.
Ye
,
Int. J. Solids Struct.
40
,
7315
(
2003
).
53.
H.
Ye
,
C.
Basaran
, and
D. C.
Hopkins
,
Int. J. Solids Struct.
41
,
4939
(
2004
).
54.
H.
Kanzaki
,
J. Phys. Chem. Solids
2
,
24
(
1957
).
55.
T. O.
Ogurtani
,
Phys. Rev. B
73
,
235408
(
2006
).
56.
T. O.
Ogurtani
and
A. K.
Seeger
,
J. Appl. Phys.
66
,
5274
(
1989
).
57.
A. E. H.
Love
,
A Treatise on the Mathematical Theory of Elasticity
(
Dover
,
New York
,
1944
), p.
108
.
58.
J. D.
Eshelby
, in
Interaction and Diffusion of Point Defects, Vacancies ’76
, edited by
R. E.
Smallman
and
E.
Harris
(
Metals Society
,
London
,
1977
), pp.
3
10
.
59.
T. O.
Ogurtani
and
O.
Akyildiz
,
Int. J. Solids Struct.
45
,
921
(
2008
).
60.
G.
Beer
and
J. O.
Watson
,
Introduction to Finite and Boundary Element Methods for Engineers
(
Wiley
,
New York
,
1992
), p.
151
.
61.
L. J.
Gray
,
D.
Maroudas
, and
M. N.
Enmark
,
Comput. Mech.
22
,
187
(
1998
).
62.
M. R.
Gungor
,
D.
Maroudas
, and
L. J.
Gray
,
Appl. Phys. Lett.
73
,
3848
(
1998
).
63.
L. J.
Gray
,
D.
Maroudas
,
M. N.
Enmark
, and
E. F.
D’Azevedo
,
Eng. Anal. Boundary Elem.
23
,
267
(
1999
).
64.
C. W.
Gear
,
Numerical Initial Value Problems in Ordinary Differential Equations
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1971
), p.
109
.
65.
J.
Pan
and
A. C. F.
Cocks
,
Acta Metall. Mater.
43
,
1395
(
1995
).
66.
C. E.
Weatherburn
,
Advanced Vector Analysis
(
Bell
,
London
,
1954
), p.
140
.
67.
C. A.
Brebbia
,
J. C. F.
Telles
, and
L. C.
Wrobel
,
Boundary Elements Techniques
(
Springer-Verlag
,
Berlin
,
1984
), p.
187
.
68.
V. I.
Smirnoff
,
A Course of Higher Mathematics
(
Pergamon
,
London
,
1964
), Vol.
4
.
69.
L.
Arnaud
,
T.
Berger
, and
G.
Reimbold
,
J. Appl. Phys.
93
,
192
(
2003
).
70.
H.
Wang
,
C.
Bruynseraede
, and
K.
Maex
,
Appl. Phys. Lett.
84
,
517
(
2004
).
71.
H. V.
Nguyen
,
C.
Salm
,
B.
Krabbenborg
,
K. W.
Zaage
,
J.
Bisschop
,
A. J.
Mouthaan
, and
F. G.
Kuper
,
IEEE Int. Reliab. Phys. Symp. Proc.
619
(
2004
).
72.
O.
Kraft
and
E.
Arzt
,
Appl. Phys. Lett.
66
,
2063
(
1995
).
73.
N. L.
Michael
,
C.
Kim
,
Q.
Jiang
,
R. A.
Augur
, and
P.
Gillespie
,
J. Electron. Mater.
31
,
1004
(
2002
).
74.
T. O.
Ogurtani
,
J. Appl. Phys.
102
,
063517
(
2007
).
75.
P. S.
Ho
,
J. Appl. Phys.
41
,
64
(
1970
).
76.
T. O.
Ogurtani
and
O.
Akyildiz
,
J. Appl. Phys.
97
,
093520
(
2005
).
77.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
(
Interscience
,
New York
,
1961
), p.
75
.
78.
C. J.
Smithells
,
Metals Reference Book
(
Butterworths
,
London
,
1967
), Vol.
III
, pp.
686
708
.
79.
M. G.
Pecht
,
R.
Agarwal
,
P.
McCluskey
,
T.
Dishong
,
S.
Javadpour
, and
R.
Mahajan
,
Electronic Packaging Materials and their Properties
(
CRC
,
New York
,
1998
).
You do not currently have access to this content.