The pathway for vanadium nitride (VN) formation obtained by milling treatment has been traced out. At the initial stages of the process, the reactant, vanadium metal, showing body-centered cubic (bcc) structure, becomes highly distorted. Simultaneously, the formation of a small nucleus of the product, VN, takes place. X-ray absorption spectroscopy (XAS) has allowed the quantification of the distortion degree as well as the detection of the VN nucleus in the early stages of their formation, while other standard structural characterization techniques are unable to detect such phenomena. For increasing milling times, apart from the expected increase in the size of the VN nucleus, a polymorphic transformation from bcc to fcc vanadium metal has been recorded. This phase might play a key role in the overall synthesis process and could be a reaction intermediate in other solid state processes involving V metal. The sensitivity of XAS to noncrystalline domains and to highly distorted environments, as well as the use of high resolution x-ray diffraction, has provided the relevant information to understand the whole reaction process.

1.
The Chemistry of Transition Metal Carbides and Nitrides
, edited by
S. T.
Oyama
(
Blackie
,
London
,
1996
).
2.
A.
Glaser
,
S.
Surnev
,
F. P.
Netzer
,
N.
Fateh
,
G. A.
Fontalvo
, and
C.
Mitterer
,
Surf. Sci.
601
,
1153
(
2007
).
3.
M. G.
Krishna
and
A. K.
Bhattacharya
,
Int. J. Mod. Phys. B
13
,
833
(
1999
).
4.
J.
Zasadzinski
,
R.
Vaglio
,
G.
Rubino
,
K. E.
Gray
, and
M.
Russo
,
Phys. Rev. B
32
,
2929
(
1985
).
5.
N.
Sudhakar
,
R. S.
Ningthoujam
,
K. P.
Rajeev
,
J.
Weissmuller
, and
N. S.
Gajbhiye
,
J. Appl. Phys.
96
,
688
(
2004
).
6.
L. E.
Toth
,
Transition Metal Carbides and Nitrides
(
Academic
,
New York
,
1971
), Vol.
7
.
7.
P. K.
Tripathy
,
J. C.
Sehra
, and
A. V.
Kulkarni
,
J. Mater. Chem.
11
,
691
(
2001
).
8.
Z.
Yang
,
P.
Cai
,
L.
Chen
,
Y.
Gu
,
L.
Shi
,
A.
Zhao
, and
Y.
Qian
,
J. Alloys Compd.
420
,
229
(
2006
).
9.
C. L.
Yeh
,
H. C.
Chuang
,
E. W.
Liu
, and
Y. C.
Chang
,
Ceram. Int.
31
,
95
(
2005
).
10.
H.
Subramanya Herle
,
M. S.
Hegde
,
N. Y.
Vasathacharya
, and
S.
Philip
,
J. Solid State Chem.
134
,
120
(
1997
).
11.
I.
Galesic
and
B. O.
Kolbesen
,
Fresenius' J. Anal. Chem.
365
,
199
(
1999
).
12.
J. M.
Cordoba
,
M. J.
Sayagues
,
M. D.
Alcala
, and
F. J.
Gotor
,
J. Am. Ceram. Soc.
90
,
381
(
2007
).
13.
P.
Ferrer
,
J. E.
Iglesias
, and
A.
Castro
,
Chem. Mater.
16
,
1323
(
2004
).
14.
J. M.
Xue
,
D. M.
Wan
, and
J.
Wang
,
Mater. Lett.
39
,
364
(
1999
).
15.
C.
Suryanarayana
,
Prog. Mater. Sci.
46
,
1
(
2001
).
16.
F. J.
Gotor
,
M. D.
Alcala
,
C.
Real
, and
J. M.
Criado
,
J. Mater. Res.
17
,
1655
(
2002
).
17.
J. M.
Criado
,
M. D.
Alcalá
, and
C.
Real
,
Solid State Ionics
101–103
,
1387
(
1997
).
18.
D.
Wexler
,
A.
Calka
, and
A. Y.
Mosbah
,
J. Alloys Compd.
309
,
201
(
2000
).
19.
A.
Calka
and
J. S.
Williams
,
Mater. Sci. Forum
88–90
,
787
(
1992
).
20.
B. K.
Teo
,
EXAFS: Basic Principles and Data Analysis
(
Springer-Verlag
,
New York
,
1986
);
D. C.
Koningsberger
and
R.
Pins
,
X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES
(
Wiley
,
New York
,
1988
).
21.
F. J.
Gotor
,
M. D.
Alcalá
,
C.
Real
, and
J. M.
Criado
,
J. Mater. Res.
17
,
1655
(
2002
).
22.
G. R.
Castro
,
J. Synchrotron Radiat.
5
,
657
(
1998
).
23.
C.
Dong
and
J. I.
Langford
,
J. Appl. Crystallogr.
33
,
1177
(
2000
).
24.
F.
Carrera
,
E.
Sanchez Marcos
,
P. J.
Merkling
,
J.
Chaboy
, and
A.
Muñoz-Páez
,
Inorg. Chem.
43
,
6674
(
2004
).
25.
J. W.
Cook
and
D. E.
Sayers
,
J. Appl. Phys.
52
,
5024
(
1981
).
26.
M.
Newville
,
J. Synchrotron Radiat.
8
,
322
(
2001
);
[PubMed]
E. A.
Stern
,
M.
Newville
,
B.
Ravel
,
Y.
Yacoby
, and
D.
Haskel
,
Physica B (Amsterdam)
208–209
,
117
(
1995
).
27.
J.
Mustre de Leon
,
J. J.
Rehr
,
S. I.
Zabinsky
, and
R. C.
Albers
,
Phys. Rev. B
44
,
4146
(
1991
);
S. I.
Zabinsky
,
J. J.
Rehr
,
A.
Ankudinov
,
R. C.
Albers
, and
M. J.
Eller
,
Phys. Rev. B
52
,
2995
(
1995
);
A. L.
Ankudinov
,
B.
Ravel
,
J. J.
Rehr
, and
S. D.
Conradson
,
Phys. Rev. B
58
,
7565
(
1998
).
28.
S.
Diaz-Moreno
,
A.
Muñoz-Páez
, and
E.
Sanchez Marcos
,
J. Phys. Chem. B
104
,
11794
(
2000
).
29.
T.
Yokoyama
,
K.
Kobayashi
,
T.
Ohta
, and
A.
Ugawa
,
Phys. Rev. B
53
,
6111
(
1996
).
30.
P. J.
Merkling
,
A.
Muñoz-Páez
, and
E.
Sanchez Marcos
,
J. Am. Chem. Soc.
124
,
10911
(
2002
).
31.
J. J.
Rehr
,
R. C.
Albers
, and
S. I.
Zabinsky
,
Phys. Rev. Lett.
69
,
3397
(
1992
);
[PubMed]
P. A.
O'Day
,
J. J.
Rehr
,
S. I.
Zabinsky
, and
G. E.
Brown
, Jr.
,
J. Am. Chem. Soc.
116
,
2938
(
1994
).
32.
C. L.
Yeh
,
H. C.
Chiang
,
E. W.
Liu
, and
Y. C.
Chang
,
Ceram. Int.
31
,
95
(
2005
).
33.
H.
Kwon
,
S.
Chot
, and
L. T.
Thompson
,
J. Catal.
184
,
236
(
1999
).
34.
P.
Malet
,
A.
Muñoz-Páez
,
C.
Martín
, and
V.
Rives
,
J. Catal.
134
,
47
(
1992
).
35.
J.
Wong
,
F. W.
Lytle
,
R. P.
Messmer
, and
D. H.
Maylotte
,
Phys. Rev. B
30
,
5596
(
1984
).
36.
P. P.
Chatterjee
,
S. K.
Pabi
, and
I.
Manna
,
J. Appl. Phys.
86
,
5912
(
1999
).
37.
I.
Manna
,
P. P.
Chattopadhyay
,
P.
Nandi
,
F.
Banhart
, and
H. J.
Fecht
,
J. Appl. Phys.
93
,
1520
(
2003
).
38.
I.
Manna
,
P. P.
Chattopadhyay
,
F.
Banhart
, and
H. J.
Fecht
,
Appl. Phys. Lett.
81
,
4136
(
2002
).
39.
M. D.
Alba
,
R.
Alvero
,
A. I.
Becerro
,
M. A.
Castro
,
A.
Muñoz-Páez
, and
J. M.
Trillo
,
J. Phys. Chem.
100
,
19559
(
1996
).
40.
L. M.
Colyer
,
G. N.
Greaves
,
A. J.
Dent
,
K. K.
Fox
,
S. W.
Karr
, and
R. H.
Jones
,
Nucl. Instrum. Methods Phys. Res. B
97
,
107
(
1995
).
41.
R. B.
Greegor
and
F. W.
Lytle
,
J. Catal.
63
,
476
(
1980
).
42.
S.
Diaz Moreno
,
D. C.
Koningsberger
, and
A.
Muñoz-Páez
,
Nucl. Instrum. Methods Phys. Res. B
133
,
15
1997
.
43.
A.
Muñoz-Páez
,
J. I. F.
Peruchena
,
J. P.
Espinós
,
A.
Justo
,
F.
Castañeda
,
S.
Díaz-Moreno
, and
D. T.
Bowron
,
Chem. Mater.
14
,
3220
(
2002
).
44.
E. A.
Stern
,
Phys. Rev. B
48
,
9825
(
1993
).
45.
J. W.
Christian
,
The Theory of Transformation in Metals and Alloys
(
Pergamon
,
Oxford
,
1978
).
You do not currently have access to this content.