Studies on magnetocaloric effect (change in magnetic entropy ΔS) and magnetotransport (difference in resistivity due to magnetic field Δρ) have been performed on polycrystalline GdRu2Si2. Due to the presence of several field-induced metamagnetic transitions and superzone energy gap effect below the antiferromagnetic transition temperature (45K), the system exhibits complex magnetotransport behavior. Such a complicated magnetotransport behavior has been analyzed by the comparative studies on Δρ and ΔS. The anomalous regions of Δρ, where it is not dominated by the change in the orientation of magnetic moments, have been highlighted by showing the difference in the variation in ΔS and Δρ. The origin of similar and dissimilar behaviors of ΔS and Δρ at different regions of temperature and magnetic field has been discussed. The comparative study of ΔS and Δρ indicates that it is a powerful technique to understand the complex magnetotransport behavior of the magnetic materials. Interestingly, the intricate magnetic phase diagram of GdRu2Si2 generated by taking magnetization, magnetotransport, or magnetocaloric data appeared to be identical, indicating the usefulness of these physical quantities to generate magnetic phase diagram.

1.
K. A.
Gschneidner
, Jr.
,
V. K.
Pecharsky
, and
A. O.
Tsokol
,
Rep. Prog. Phys.
68
,
1479
(
2005
).
2.
A. M.
Tishin
, in
Handbook of Magnetic Materials
, edited by
K. H. J.
Buschow
(
North-Holland
,
Amsterdam
,
1999
), Vol.
12
, p.
395
.
3.
T.
Samanta
,
I.
Das
, and
S.
Banerjee
,
Appl. Phys. Lett.
91
,
082511
(
2007
).
4.
T.
Samanta
,
I.
Das
, and
S.
Banerjee
,
Appl. Phys. Lett.
91
,
152506
(
2007
).
5.
A.
Biswas
,
T.
Samanta
,
S.
Banerjee
, and
I.
Das
,
Appl. Phys. Lett.
92
,
012502
(
2008
).
6.
A.
Biswas
,
T.
Samanta
,
S.
Banerjee
, and
I.
Das
,
J. Appl. Phys.
103
,
013912
(
2008
).
7.
T.
Samanta
and
I.
Das
,
Phys. Rev. B
74
,
132405
(
2006
).
8.
A.
Biswas
,
T.
Samanta
,
S.
Banerjee
, and
I.
Das
,
Appl. Phys. Lett.
92
,
212502
(
2008
).
9.
W. J.
Hu
,
J.
Du
,
B.
Li
,
Q.
Zhang
, and
Z. D.
Zhang
,
Appl. Phys. Lett.
92
,
192505
(
2008
).
10.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
,
Phys. Rev. Lett.
78
,
4494
(
1997
).
11.
E. V.
Sampathkumaran
and
I.
Das
,
Phys. Rev. B
51
,
8631
(
1995
).
12.
R.
Mallik
,
E. V.
Sampathkumaran
,
P. L.
Paulose
, and
V.
Nagarajan
,
Phys. Rev. B
55
,
R8650
(
1997
).
13.
K.
Hiebl
,
C.
Horvath
,
P.
Rogl
, and
M. J.
Sienko
,
J. Magn. Magn. Mater.
37
,
287
(
1983
).
14.
M.
Slaski
,
A.
Szytula
,
J.
Leciejewicz
, and
A.
Zygmunt
,
J. Magn. Magn. Mater.
46
,
114
(
1984
).
15.
G.
Czjzek
,
V.
Oestreich
,
H.
Schmidt
,
K.
Latka
, and
K.
Tomala
,
J. Magn. Magn. Mater.
79
,
42
(
1989
).
16.
E.
Colineau
,
P.
Javorsky
,
P.
Boulet
,
F.
Wastin
,
J. C.
Griveau
,
J.
Rebizant
,
J. P.
Sanchez
, and
G. R.
Stewart
,
Phys. Rev. B
69
,
184411
(
2004
).
17.
R.
Rawat
and
I.
Das
,
J. Phys.: Condens. Matter
13
,
L379
(
2001
).
18.
L. D.
Tung
,
J. J. M.
Franse
,
K. H. J.
Buschow
,
P. E.
Bromrner
, and
N. P.
Thuy
,
J. Alloys Compd.
260
,
35
(
1997
).
You do not currently have access to this content.