Experiments were carried out in a flow cell apparatus under conditions corresponding to those of a typical oxygen-iodine laser. The cell was equipped with a chemical jet type singlet oxygen generator and an electric discharge for the production of iodine atoms. The properties of the discharge generator and the active medium were studied using laser-induced fluorescence and emission spectroscopy. I2 or CH3I entrained in a carrier flow of Ar were used as atomic iodine precursors. About 50% of the iodine contained in CH3I molecules was extracted in the generator. 2.6% of the electric power loaded into the discharge was used in CH3I dissociation. Right after the discharge 80%–90% of the iodine flow consisted of atoms. However, due to recombination during transport, only 20%–50% of atoms remained at the point of injection into the oxygen flow. A straightforward comparison of two methods of oxygen-iodine medium production—conventional, by means of I2 dissociation in the singlet oxygen flow and with iodine atoms produced externally in the electric discharge—was performed. It was found that the lifetime for the energy stored in singlet oxygen was about 30% longer, when atomic iodine was produced from CH3I in the discharge, as compared to the conventional chemical dissociation of I2 in the singlet oxygen flow.

1.
D. L.
Carroll
,
W. C.
Solomon
,
D.
King
,
L.
Fockler
,
D.
Stromberg
,
M.
Sexauer
,
A.
Milmoe
, and
L. H.
Sentman
,
1999 Proceedings of the International Conference on Lasers
, edited by
V. J.
Corcoran
(
STS
,
McLean VA
,
2000
), p.
69
.
2.
M.
Endo
,
D.
Sugimoto
,
H.
Okamoto
,
K.
Nanri
,
T.
Uchiyama
,
S.
Takeda
, and
T.
Fujioka
,
Jpn. J. Appl. Phys., Part 1
39
,
468
(
2000
).
3.
T.
Wakazono
,
K.
Hashimoto
, and
T.
Takemoto
,
Proc. SPIE
3574
,
290
(
1998
).
4.
A.
Katz
,
Z.
Dahan
,
V.
Rybalkin
,
K.
Waichman
,
B.
Barmashenko
, and
S.
Rosenwaks
,
Appl. Phys. Lett.
90
,
161122
(
2007
).
5.
N. P.
Vagin
,
V. S.
Pazyuk
, and
N. N.
Yuryshev
,
Quantum Electron.
25
,
746
(
1995
).
6.
N. P.
Vagin
and
N. N.
Yuryshev
,
Quantum Electron.
31
,
127
(
2001
).
7.
P. A.
Mikheyev
,
A. A.
Shepelenko
,
A. I.
Voronov
, and
N. V.
Kupryaev
,
Quantum Electron.
32
,
1
(
2002
).
8.
P. A.
Mikheyev
,
A. A.
Shepelenko
,
A. I.
Voronov
, and
N. V.
Kupryaev
,
J. Phys. D
37
,
3202
(
2004
).
9.
M. V.
Zagidullin
,
V. D.
Nikolayev
,
M. I.
Svistun
, and
N. A.
Khvatov
,
Quantum Electron.
35
,
907
(
2005
).
10.
V.
Rybalkin
,
A.
Katz
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
Appl. Phys. Lett.
85
,
5851
(
2004
).
11.
I. O.
Antonov
,
V. N.
Azyazov
,
A. V.
Mezhenin
,
G. N.
Popkov
, and
N. I.
Ufimtsev
,
Appl. Phys. Lett.
89
,
051115
(
2006
).
12.
T. T.
Yang
,
A.
Bhowmik
,
D.
Burde
,
R.
Clark
,
S.
Carroll
,
R. A.
Dickenson
,
J.
Eblen
,
T.
Gylys
,
Y. C.
Hsia
,
R.
Humphreys
, Jr.
,
L.
Moon
,
S. C.
Hurlock
, and
A.
Tomassian
,
Proc. SPIE
4760
,
537
(
2002
).
13.
V. N.
Azyazov
,
P. A.
Mikheyev
,
N. I.
Ufimtsev
,
E. V.
Fomin
,
I. O.
Antonov
, and
M. C.
Heaven
,
J. Appl. Phys.
102
,
123108
(
2007
).
14.
V. N.
Azyazov
and
M. C.
Heaven
,
AIAA J.
44
,
1593
(
2006
).
15.
R. N.
Zare
,
J. Chem. Phys.
40
,
1934
(
1964
).
16.
G.
Perram
,
Int. J. Chem. Kinet.
27
,
817
(
1995
).
17.
T. J.
Madden
,
G. D.
Hager
,
A. I.
Lampson
, and
P. G.
Crowell
,
30th Plasmadynamics and Lasers Conference
,
1999
(unpublished), AIAA Paper No. 99-3429.
You do not currently have access to this content.