In this study the performance differences of layered and bulk-heterojunction based organic solar cells composed of the prototypical p- and n-type organic semiconductors pentacene (PEN) and fullerene (C60) are correlated with the physical properties of the heterostructures. The electronic structure of layered and codeposited thin PEN and C60 films on the conducting polymer substrate poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was investigated with ultraviolet photoelectron spectroscopy. Layered structures of C60 on PEN precovered PEDOT:PSS exhibited an offset of the highest occupied molecular orbital (HOMO) levels of 1.45 eV. In contrast, codeposited films of PEN and C60 showed a reduced HOMO-level offset of 0.85 eV, which increased to 1.45 eV by precoverage of the substrate with a thin PEN layer. In this case, the PEN-HOMO level was Fermi-level pinned at 0.35 eV binding energy and charge transfer between PEN and PEDOT:PSS decreased the vacuum level by 0.75 eV. In addition, the morphology and crystal structure of the respective systems have been investigated by atomic force microscopy (AFM), x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy, which indicated pronounced phase separation of PEN and C60 in the codeposited films. XRD revealed crystalline growth of PEN in all investigated cases forming crystallites that exceeded the nominal film thickness by an order of magnitude, whereas C60 was crystalline only if grown on the PEN precovered substrates. AFM investigations allowed to correlate morphology and structure revealing micro- and nanophase separation between PEN and C60.

1.
C. W.
Tang
,
Appl. Phys. Lett.
48
,
183
(
1986
).
2.
C. W.
Tang
and
S. A.
VanSlyke
,
Appl. Phys. Lett.
51
,
913
(
1987
).
3.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
4.
N.
Koch
,
ChemPhysChem
8
,
1438
(
2007
).
5.
P.
Peumans
,
S.
Uchida
, and
S. R.
Forrest
,
Nature (London)
425
,
158
(
2003
).
6.
J.
Nelson
,
Science
293
,
1059
(
2001
).
7.
S.
Yoo
,
B.
Domercq
, and
B.
Kippelen
,
Appl. Phys. Lett.
85
,
5427
(
2004
).
8.
A. K.
Pandey
and
J. -M.
Nunzi
,
Appl. Phys. Lett.
89
,
213506
(
2006
).
9.
D. M.
Nanditha
,
M.
Dissanayake
,
A. A. D. T.
Adikaari
,
R. J.
Curry
,
R. A.
Hatton
, and
S. R. P.
Silva
,
Appl. Phys. Lett.
90
,
113505
(
2007
).
10.
P.
Sullivan
,
S.
Heutz
,
S. M.
Schultes
, and
T. S.
Jones
,
Appl. Phys. Lett.
84
,
1210
(
2004
).
11.
B.
Brousse
,
B.
Ratier
, and
A.
Moliton
,
Thin Solid Films
451–452
,
81
(
2004
).
12.
C. J.
Brabec
,
N. S.
Sariciftci
, and
J. C.
Hummelen
,
Adv. Funct. Mater.
11
,
15
(
2001
).
13.
J.
Xue
,
B. P.
Rand
,
S.
Uchida
, and
S. R.
Forrest
,
J. Appl. Phys.
98
,
124903
(
2005
).
14.
J.
Xue
,
S.
Uchida
,
B. P.
Rand
, and
S. R.
Forrest
,
Appl. Phys. Lett.
84
,
3013
(
2004
).
15.
I.
Salzmann
,
R.
Opitz
,
S.
Rogaschewski
,
J. P.
Rabe
, and
N.
Koch
,
Phys. Rev. B
75
,
174108
(
2007
).
16.
I.
Salzmann
,
S.
Duhm
,
R.
Opitz
,
J. P.
Rabe
, and
N.
Koch
,
Appl. Phys. Lett.
91
,
051919
(
2007
).
17.
A. K.
Pandey
,
K. N. N.
Unni
, and
J.
Nunzi
,
Thin Solid Films
511–512
,
529
(
2006
).
18.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
b).
19.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
20.
A.
Kahn
,
N.
Koch
, and
W. Y.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
21.
N.
Koch
,
I.
Salzmann
,
R. L.
Johnson
,
J.
Pflaum
,
R.
Friedlein
, and
J. P.
Rabe
,
Org. Electron.
7
,
537
(
2006
).
22.
H.
Vázquez
,
W.
Gao
,
F.
Flores
, and
A.
Kahn
,
Phys. Rev. B
71
,
041306
(
2005
).
23.
B. P.
Rand
,
J.
Xue
,
S.
Uchida
, and
S. R.
Forrest
,
J. Appl. Phys.
98
,
124902
(
2005
).
24.
A. H.
Jayatissa
,
T.
Gupta
, and
A. D.
Pandya
,
Carbon
42
,
1143
(
2004
).
25.
N.
Koch
,
A.
Vollmer
, and
A.
Elschner
,
Appl. Phys. Lett.
90
,
043512
(
2007
).
26.
R. L.
Johnson
and
J.
Reichardt
,
Nucl. Instrum. Methods Phys. Res.
208
,
791
(
1983
).
27.
S.
Yoo
,
W. J.
Potscavage
, Jr.
,
B.
Domercq
,
S.
Han
,
T.
Li
,
S.
Jones
,
R.
Szoszkiewicz
,
D.
Levi
,
E.
Riedo
,
S. R.
Marder
, and
B.
Kippelen
,
Solid-State Electron.
51
,
1367
(
2007
).
28.
M.
Vogel
,
S.
Doka
,
C.
Breyer
,
M. C.
Lux-Steiner
, and
K.
Fostiropoulos
,
Appl. Phys. Lett.
89
,
163501
(
2006
).
29.
N.
Koch
,
A.
Elschner
,
J. P.
Rabe
, and
R. L.
Johnson
,
Adv. Mater.
17
,
330
(
2005
).
30.
N.
Koch
and
A.
Vollmer
,
Appl. Phys. Lett.
89
,
162107
(
2006
).
31.
S.
Kang
,
Y.
Yi
,
C.
Kim
,
S.
Cho
,
M.
Noh
,
K.
Jeong
, and
C.
Whang
,
Synth. Met.
156
,
32
(
2006
).
32.
F. J.
Zhang
,
A.
Vollmer
,
J.
Zhang
,
Z.
Xu
,
J. P.
Rabe
, and
N.
Koch
,
Org. Electron.
8
,
606
(
2007
).
33.
Note that the IE of PEN seems remarkably large (5.50 eV) in the codeposited film on pristine PEDOT:PSS. This cannot be explained by a structural reorientation of PEN compared to the pure PEN film (Ref. 66). PEN and C60 exhibit pronounced phase separation (as demonstrated in the XRD and AFM part of this work) with local vacuum levels above the respective patches. In our UPS experiments an area averaged surface potential is measured (Refs. 67–69). Therefore the IE of PEN in the codeposited film cannot be properly determined with the present data.
34.
R.
Mitsumoto
,
K.
Seki
,
T.
Araki
,
E.
Ito
,
Y.
Ouchi
,
Y.
Achiba
,
K.
Kikuchi
,
S.
Yajima
,
S.
Kawasaki
,
F.
Okino
,
H.
Touhara
,
H.
Kurosaki
,
T.
Sonoda
, and
H.
Kabayashi
,
J. Electron Spectrosc. Relat. Phenom.
78
,
453
(
1996
).
35.
The reversed deposition sequence of PEN on C60 precovered PEDOT:PSS is not relevant for OPVC application. However, the results are interesting from a fundamental point of view, since we found evidence for a lack of thermodynamic equilibrium between the PEN top-layer and the substrate, which will be subject of a forthcoming publication (Ref. 70).
36.
C. C.
Mattheus
,
A. B.
Dros
,
J.
Baas
,
G. T.
Oostergetel
,
A.
Meetsma
,
J. L.
de Boer
, and
T. T. M.
Palstra
,
Synth. Met.
138
,
475
(
2003
).
37.
H.
Kiessig
,
Ann. Phys.
402
,
715
(
1931
).
38.
J. L.
de Boer
,
S.
van Smaalen
,
V.
Petricek
,
P. M.
Dusek
,
M. A.
Verheijen
, and
G.
Meijer
,
Chem. Phys. Lett.
219
,
469
(
1994
).
39.
K.
Itaka
,
M.
Yamashiro
,
J.
Yamaguchi
,
M.
Haemori
,
S.
Yaginuma
,
Y.
Matsumoto
,
M.
Kondo
, and
H.
Koinuma
,
Adv. Mater.
18
,
1713
(
2006
).
40.
S.
Schiefer
,
M.
Huth
,
A.
Dobrinevski
, and
B.
Nickel
,
J. Am. Chem. Soc.
129
,
10316
(
2007
).
41.
D.
Nabok
,
P.
Puschnig
,
C.
Ambrosch-Draxl
,
O.
Werzer
,
R.
Resel
, and
D. M.
Smilgies
,
Phys. Rev. B
76
,
235322
(
2007
).
42.
B.
Warren
,
X-Ray Diffraction
(
Dover
,
New York
,
1990
).
43.
M.
Tolan
,
X-ray Scattering from Soft-Matter Thin Films
,
Springer Tracts in Modern Physics
Vol.
148
(
Springer-Verlag
,
Berlin
,
1999
).
44.
A. C.
Dürr
,
F.
Schreiber
,
M.
Munch
,
N.
Karl
,
B.
Krause
,
V.
Kruppa
, and
H.
Dosch
,
Appl. Phys. Lett.
81
,
2276
(
2002
).
45.
P.
Scherrer
,
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
2
,
98
(
1918
).
46.
T.
Minari
,
T.
Nemoto
, and
S.
Isoda
,
J. Appl. Phys.
96
,
769
(
2004
).
47.
G. K.
Williamson
and
W. H.
Hall
,
Acta Metall.
1
,
22
(
1953
).
48.
M.
Oehzelt
,
G.
Koller
,
J.
Ivanco
,
S.
Berkebile
,
T.
Haber
,
R.
Resel
,
F.
Netzer
, and
M.
Ramsey
,
Adv. Mater.
18
,
2466
(
2006
).
49.
J. I.
Langford
, in
Accuracy in Powder Diffraction II
,
National Institute of Standards and Technology Special Publication
, (
NIST
,
Washington
: US Department of Commerce,
1992
) Vol.
846
, pp.
110
126
.
50.
R.
Snyder
,
J.
Fiala
, and
H. J.
Bunge
,
Defect and Microstructure Analysis by Diffraction
(
Oxford University Press
,
New York
,
1999
).
51.
M.
Birkholz
,
Thin Film Analysis by X-Ray Scattering
(
Wiley-VCH Verlag GmbH
,
Weinheim
,
2006
).
52.
The parameters β2Θ and d in reciprocal units: β2Θ=β2Θcos(θ)/λ, d=2sin(θ)/λ.
53.
U.
Zhokhavets
,
T.
Erb
,
H.
Hoppe
,
G.
Gobsch
, and
N. S.
Sariciftci
,
Thin Solid Films
496
,
679
(
2006
).
54.
V.
Holý
,
U.
Pietsch
, and
T.
Baumbach
,
High-Resolution X-Ray Scattering from Thin Films and Multilayers
,
Springer Tracts in Modern Physics Vol. 149
(
Springer-Verlag
,
Berlin
,
1999
).
55.
ϱel=αc2π/λ2rel where αc denotes the Bragg-angle of total external reflection, λ the x-ray wavelength, and rel=e2/4πε0melc22.82×1015m the Compton radius.
56.
J.
Yang
and
T. Q.
Nguyen
,
Org. Electron.
8
,
566
(
2007
).
57.
I. I.
Potemkin
and
M.
Moller
,
Macromolecules
38
,
2999
(
2005
).
58.
S.
Walheim
,
M.
Ramstein
, and
U.
Steiner
,
Langmuir
15
,
4828
(
1999
).
59.
P.
Müller-Buschbaum
,
E.
Bauer
,
O.
Wunnicke
, and
M.
Stamm
,
J. Phys.: Condens. Matter
17
,
S363
(
2005
).
60.
Y.
Thomann
,
H. -J.
Cantow
,
G.
Bar
, and
M. -H.
Whangbo
,
Appl. Phys. A
66
,
S1233
(
1998
).
61.
S. N.
Magonov
,
V.
Elings
, and
V. S.
Papkov
,
Polymer
38
,
297
(
1997
).
62.
P.
Busch
,
D.
Posselt
,
D. -M.
Smilgies
,
B.
Rheinlander
,
F.
Kremer
, and
C.
Papdakis
,
Macromolecules
36
,
8717
(
2003
).
63.
J.
Szczepanski
,
C.
Wehlburg
, and
M.
Vala
,
Chem. Phys. Lett.
232
,
221
(
1995
).
64.
D. M.
Hudgins
and
S. A.
Sandford
,
J. Phys. Chem. A
102
,
344
(
1998
).
65.
In a recent XRD study almost upright molecular arrangement was shown for the PEN monolayer71 and in a different work it has been reported that PEN exhibits a thickness driven orthorhombic to triclinic phase transition on amorphous carbon coated mica substrates (Ref. 72). The unit cells proposed in both studies are equal within the error margin, hence we may speculate that the vibrations found in our FT-IR investigation can be assigned to this specific polymorph. Another explanation can be the bimodal growth behavior of PEN films in thin film and bulk phase, which was recently shown to be undetectable by XRD at low nominal film thickness (Ref. 73). Therefore the shifted vibration of the ultrathin film could dominantly stem from the thin film phase, whereas the thick PEN film shows a superposition of thin film and bulk phase features. Admittedly, this cannot be decided from our data and more work concerning this question in particular and the correlation of FT-IR to XRD in general is necessary and will be subject to our further research efforts.
66.
S.
Duhm
,
G.
Heimel
,
I.
Salzmann
,
H.
Glowatzki
,
R. L.
Johnson
,
A.
Vollmer
,
J. P.
Rabe
, and
N.
Koch
,
Nature Mater.
7
,
326
(
2008
).
67.
G.
Koller
,
F. P.
Netzer
, and
M. G.
Ramsey
,
Appl. Phys. Lett.
83
,
563
(
2003
).
68.
R.
Fischer
,
S.
Schuppler
,
N.
Fischer
,
T.
Fauster
, and
W.
Steinmann
,
Phys. Rev. Lett.
70
,
654
(
1993
).
69.
I.
Salzmann
,
S.
Duhm
,
G.
Heimel
,
M.
Oehzelt
,
R.
Kniprath
,
R. L.
Johnson
,
J. P.
Rabe
, and
N.
Koch
,
J. Am. Chem. Soc.
.
130
,
12870
(
2008
).
70.
S.
Duhm
,
I.
Salzmann
R. L.
Johnson
, and
N.
Koch
(unpublished).
71.
S. E.
Fritz
,
S. M.
Martin
,
C. D.
Frisbie
,
M. D.
Ward
, and
M. F.
Toney
,
J. Am. Chem. Soc.
126
,
4084
(
2004
).
72.
L.
Drummy
and
D.
Martin
,
Adv. Mater.
17
,
903
(
2005
).
73.
A. C.
Mayer
,
A.
Kazimirov
, and
G. G.
Malliaras
,
Phys. Rev. Lett.
97
,
105503
(
2006
).
You do not currently have access to this content.