Using the concept of surface stress, we developed a model that is able to predict Young’s modulus of nanowires as a function of nanowire diameters from the calculated properties of their surface and bulk materials. We took both equilibrium strain effect and surface stress effect into consideration to account for the geometric size influence on the elastic properties of nanowires. In this work, we combined first-principles density functional theory calculations of material properties with linear elasticity theory of clamped-end three-point bending. Furthermore, we applied this computational approach to Ag, Au, and ZnO nanowires. For both Ag and Au nanowires, our theoretical predictions agree well with the experimental data in the literature. For ZnO nanowires, our predictions are qualitatively consistent with some of experimental data for ZnO nanostructures. Consequently, we found that surface stress plays a very important role in determining Young’s modulus of nanowires. Our finding suggests that the elastic properties of nanowires could be possibly engineered by altering the surface stress of their lateral surfaces.

1.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
,
061101
(
2005
).
2.
X.
Wang
,
J.
Song
,
J.
Liu
, and
Z. L.
Wang
,
Science
316
,
102
(
2007
).
3.
S.
Cuenot
,
C.
Frétigny
,
S.
Demoustier-Champagne
, and
B.
Nysten
,
Phys. Rev. B
69
,
165410
(
2004
).
4.
G. Y.
Jing
,
H. L.
Duan
,
X. M.
Sun
,
Z. S.
Zhang
,
J.
Xu
,
Y. D.
Li
,
J. X.
Wang
, and
D. P.
Yu
,
Phys. Rev. B
73
,
235409
(
2006
).
5.
X.
Li
,
T.
Ono
,
Y.
Wang
, and
M.
Esashi
,
Appl. Phys. Lett.
83
,
3081
(
2003
).
6.
S. G.
Nilsson
,
X.
Borrisé
, and
L.
Montelius
,
Appl. Phys. Lett.
85
,
3555
(
2004
).
7.
B.
Wu
,
A.
Heidelberg
, and
J. J.
Boland
,
Nature Mater.
4
,
525
(
2005
).
8.
X. D.
Bai
,
P. X.
Gao
,
Z. L.
Wang
, and
E. G.
Wang
,
Appl. Phys. Lett.
82
,
4806
(
2003
).
9.
J.
Song
,
X.
Wang
,
E.
Riedo
, and
Z. L.
Wang
,
Nano Lett.
5
,
1954
(
2005
).
10.
M. H.
Zhao
,
C. B.
Jiang
,
S. X.
Li
, and
S. X.
Mao
,
Mater. Sci. Eng., A
409
,
223
(
2005
).
11.
H.
Ni
and
X. D.
Li
,
Nanotechnology
17
,
3591
(
2006
).
12.
W.
Mai
and
Z. L.
Wang
,
Appl. Phys. Lett.
89
,
073112
(
2006
).
13.
M.
Lucas
,
W.
Mai
,
R.
Yang
,
Z. L.
Wang
, and
E.
Reido
,
Nano Lett.
7
,
1314
(
2007
).
14.
C. Q.
Chen
,
Y.
Shi
,
Y. S.
Zhang
,
J.
Zhu
, and
Y. J.
Yan
,
Phys. Rev. Lett.
96
,
075505
(
2006
).
15.
G.
Stan
,
C. V.
Ciobanu
,
P. M.
Parthangal
, and
R. F.
Cook
,
Nano Lett.
7
,
3691
(
2007
).
16.
J. Q.
Broughton
,
C. A.
Meli
,
P.
Vashishta
, and
R. K.
Kalia
,
Phys. Rev. B
56
,
611
(
1997
).
17.
R. E.
Miller
and
V. B.
Shenoy
,
Nanotechnology
11
,
139
(
2000
).
18.
V. B.
Shenoy
,
Phys. Rev. B
71
,
094104
(
2005
).
19.
L. G.
Zhou
and
H. C.
Huang
,
Appl. Phys. Lett.
84
,
1940
(
2004
).
20.
H. Y.
Liang
,
M.
Upmanyu
, and
H. C.
Huang
,
Phys. Rev. B
71
,
241403
(
2005
).
21.
R. C.
Cammarata
,
Prog. Surf. Sci.
46
,
1
(
1994
).
22.
G.
Wang
and
X. D.
Li
,
Appl. Phys. Lett.
91
,
231912
(
2007
).
23.
H. S.
Park
,
J. Appl. Phys.
103
,
123504
(
2008
).
24.
W.
Zhang
,
T.
Wang
, and
X.
Chen
,
J. Appl. Phys.
103
,
123527
(
2008
).
25.
J.
Diao
,
K.
Gall
, and
M. L.
Dunn
,
J. Mech. Phys. Solids
52
,
1935
(
2004
).
26.
B.
Lee
and
R. E.
Rudd
,
Phys. Rev. B
75
,
041305
(R) (
2007
).
27.
J. M.
Gere
and
S. P.
Timoshenko
,
Mechanics of Materials
(
PWS Engineering
,
Boston
,
1987
), p.
434
.
28.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
29.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
30.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
31.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
32.
P.
Söderlind
,
O.
Eriksson
,
J. M.
Wills
, and
A. M.
Boring
,
Phys. Rev. B
48
,
5844
(
1993
).
33.
L.
Fast
,
J. M.
Wills
,
B.
Johansson
, and
O.
Eriksson
,
Phys. Rev. B
51
,
17431
(
1995
).
34.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
,
New York
,
1976
).
35.
G.
Simmons
and
H.
Wang
,
Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
(
MIT
,
Cambridge
,
1971
).
36.
H.
Rolnick
,
Phys. Rev.
36
,
506
(
1930
).
37.
H.
Karzel
,
W.
Potzel
,
M.
Köfferlein
,
W.
Schiessl
,
M.
Steiner
,
U.
Hiller
,
G. M.
Kalvius
,
D. W.
Mitchell
,
T. P.
Das
,
P.
Blaha
,
K.
Schwarz
, and
M. P.
Pasternak
,
Phys. Rev. B
53
,
11425
(
1996
).
38.
J.
Albertsson
,
S. C.
Abrahams
, and
Å.
Kvick
,
Acta Crystallogr. B
45
,
34
(
1989
).
39.
T. B.
Bateman
,
J. Appl. Phys.
33
,
3309
(
1962
).
40.
S. O.
Kucheyev
,
J. E.
Bradby
,
J. S.
Williams
,
C.
Jagadish
, and
M. V.
Swain
,
Appl. Phys. Lett.
80
,
956
(
2002
).
41.
F.
Soria
,
J. L.
Sacedon
,
P. M.
Echenigire
, and
D.
Titherington
,
Surf. Sci.
68
,
448
(
1977
).
42.
Ž.
Crljen
,
P.
Lazić
,
D.
Šokčević
, and
R.
Brako
,
Phys. Rev. B
68
,
195411
(
2003
).
43.
C. B.
Duke
,
R. J.
Meyer
,
A.
Paton
, and
P.
Mark
,
Phys. Rev. B
18
,
4225
(
1978
).
44.
B.
Meyer
and
D.
Marx
,
Phys. Rev. B
67
,
035403
(
2003
).
45.
R. J.
Needs
,
Phys. Rev. Lett.
58
,
53
(
1987
).
46.
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
45
,
721
(
1994
).
47.
C. Y.
Nam
,
P.
Jaroenapibal
,
D.
Tham
,
D. E.
Luzzi
,
S.
Evoy
, and
J. E.
Fischer
,
Nano Lett.
6
,
153
(
2006
).
48.
H.
Ni
,
X. D.
Li
,
G. S.
Cheng
, and
R.
Klie
,
J. Mater. Res.
21
,
2882
(
2006
).
49.
G.
Feng
,
W. D.
Nix
,
Y.
Yoon
, and
C. J.
Lee
,
J. Appl. Phys.
99
,
074304
(
2006
).
50.
X. D.
Li
,
X. X.
Wang
,
Q. H.
Xiong
, and
P. C.
Eklund
,
Nano Lett.
5
,
1982
(
2005
).
51.
Q.
Xiong
,
N.
Duarte
,
S.
Tadigadapa
, and
P. C.
Eklund
,
Nano Lett.
6
,
1904
(
2006
).
You do not currently have access to this content.