It is known that bulk metallic samples reflect microwaves while powdered samples can absorb such radiation and be heated efficiently. In the present work we studied heating mechanisms of metallic powders in a multimode 2.45 GHz microwave applicator. The present paper shows direct evidence of penetration of a layer of metallic powder by microwave radiation and provides theoretical explanation of such behavior.The most effectively heated powder is Fe because both eddy current loss (in alternating H-field) and magnetic reversal loss (in alternating E-field) mechanisms act in case of such metal. Diamagnetic metals Sn and Cu are heated better than paramagnetic Ti while Au is also only slightly heated. Cu- and Ni-based metallic glassy powders are also moderately heated. Weak heating of Au powder (which is a noble metal) can be explained by the absence on the particles of the oxide layer (shell), which allows eddy currents flowing through larger area compared to other metals, and reflection mechanism works much better in such case.

1.
D.
Clark
and
W. H.
Sutton
,
Annu. Rev. Mater. Sci.
26
,
299
(
1996
).
2.
J. D.
Katz
,
Annu. Rev. Mater. Sci.
22
,
153
(
1992
).
3.
R.
Roy
,
D.
Agrawal
,
J.
Cheng
, and
S.
Gedevanishvili
,
Nature (London)
399
,
664
(
1999
).
4.
R. M.
Anklekar
,
K.
Bauer
,
D. K.
Agrawal
, and
R.
Roy
,
Powder Metall.
48
,
39
(
2005
).
5.
R.
Roy
,
R.
Peelamedu
,
L.
Hurtt
,
J.
Cheng
, and
D.
Agrawal
,
Mater. Res. Innovations
6
,
128
(
2002
).
6.
N.
Yoshikawa
,
E.
Ishizuka
, and
S.
Taniguchi
,
Mater. Trans.
47
,
898
(
2006
).
7.
R. M.
Anklekar
,
D. K.
Agrawal
, and
R.
Roy
,
Powder Metall.
44
,
355
(
2001
).
8.
9.
Y.
He
,
G. J.
Shiflet
, and
S. J.
Poon
,
Acta Metall. Mater.
43
,
83
(
1995
).
10.
T.
Kimura
,
H.
Takizawa
,
K.
Ueda
, and
T.
Endo
,
Proceedings of the International Conference Microwave Chemistry
,
2000
(unpublished), p.
335
.
11.
R.
Roy
,
R.
Peelamedu
,
C.
Grimes
,
J.
Cheng
, and
D.
Agrawal
,
J. Mater. Res.
17
,
3008
(
2002
).
12.
R.
Roy
,
R.
Peelamedu
,
L.
Hurtt
,
J. P.
Cheng
, and
D.
Agrawal
,
Mater. Res. Innovations
6
,
128
(
2002
).
13.
L. D.
Landau
,
E. M.
Lifshits
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
, 2nd ed. (
Pergamon
,
New York
,
1984
).
14.
D. A. G.
Bruggeman
,
Ann. Phys.
416
,
636
(
1935
).
15.
R.
Landauer
,
J. Appl. Phys.
23
,
779
(
1952
).
16.
D. J.
Bergman
and
D.
Stroud
, in
Solid State Physics: Advances in Research and Applications
, edited by
H.
Ehrenreich
and
D.
Turnbull
(
Academic
,
New York
,
1992
), Vol.
46
, pp.
147
269
.
17.
D.
Stroud
,
Superlattices Microstruct.
23
,
567
(
1998
).
18.
G. W.
Milton
,
The Theory of Composites
(
Cambridge University Press
,
Cambridge
,
2002
).
19.
Z.
Hashin
and
S.
Shtrikman
,
J. Appl. Phys.
33
,
3125
(
1962
).
20.
Z. -J.
Peng
,
P. -C.
Zhai
, and
Q. -J.
Zhang
,
Mater. Sci. Forum
492–493
,
89
(
2005
).
21.
K. I.
Rybakov
and
V. E.
Semenov
,
Radiophys. Quantum Electron.
48
,
888
(
2005
).
22.
K. I.
Rybakov
,
V. E.
Semenov
,
S. V.
Egorov
,
A. G.
Eremeev
,
I. V.
Plotnikov
, and
Yu. V.
Bykov
,
J. Appl. Phys.
99
,
023506
(
2006
).
23.
P.
Mishra
,
G.
Sethi
, and
A.
Upadhyaya
,
Metall. Mater. Trans. B
37B
,
839
(
2006
).
24.
Tables of Physical Values Handbook
, edited by
I. K.
Kikoin
(
Energoatomizdat
,
Moscow
,
1991
), p.
1008
.
You do not currently have access to this content.