An approach to evaluate the microwave-detected photoconductance decay (MWPCD) is developed, which allows to extract the minority carrier lifetime as a function of the excess carrier density from a single MWPCD measurement. The method is shown to be applicable to thin (w200μm) silicon wafers with low minority carrier recombination at the surfaces and bulk lifetimes in the range of about 1100μs. Comparison of the MWPCD results with minority carrier lifetime measurements using the quasi-steady-state photoconductance method reveals very good agreement between both types of measurement. Only when the photoconductance exceeds 30% of the dark conductivity, is a deviation observed, because then the MWPCD signal is no longer directly proportional to the excess carrier density. Minority carrier trapping is found to affect the MWPCD signal only in the tail of the measured photoconductance decay. The evaluation method is used to map the interstitial iron content with high spatial resolution, as well as to determine the minority carrier trap density. An excellent agreement between numerical simulation and measured MWPCD signal is found revealing the assumptions made for the evaluation approach to be valid. This evaluation of the MWPCD measurement is well suited to characterize silicon of low purity and low crystalline quality, which is often employed to solar cells with high spatial resolution.

1.
M.
Kunst
and
G.
Beck
,
J. Appl. Phys.
60
,
3558
(
1986
).
2.
M.
Kunst
and
G.
Beck
,
J. Appl. Phys.
63
,
1093
(
1988
).
3.
D. C.
Gupta
,
W. M.
Hughes
, and
F. R.
Bacher
,
ASTM
Report No. STP1340,
1998
.
4.
Several solar cell manufacturers use electronic grade silicon to produce high efficiency solar cells.
5.
P. A.
Basore
and
B. R.
Hansen
, in
Proceedings of the 21st IEEE Photovoltaics Specialists Conference
(
IEEE
,
New York
,
1990
), p.
374
.
6.
R.
Brendel
,
Appl. Phys. A: Mater. Sci. Process.
60
,
523
(
1995
).
7.
J.
Schmidt
and
A. G.
Aberle
,
J. Appl. Phys.
81
,
6186
(
1997
).
8.
J.
Schmidt
,
IEEE Trans. Electron Devices
46
,
2018
(
1999
).
9.
R.
Sinton
and
A.
Cuevas
,
Appl. Phys. Lett.
69
,
2510
(
1996
).
10.
G.
Zoth
and
W.
Bergholz
,
J. Appl. Phys.
67
,
6764
(
1990
).
11.
J.
Hornbeck
and
J.
Haynes
,
Phys. Rev.
97
,
311
(
1955
).
12.
B.
Harbecke
,
Appl. Phys. B: Lasers Opt.
39
,
165
(
1986
).
13.
M.
Schöfthaler
and
R.
Brendel
,
J. Appl. Phys.
77
,
3162
(
1995
).
14.
T.
Lauinger
,
J.
Schmidt
,
A. G.
Aberle
, and
R.
Hezel
,
Appl. Phys. Lett.
68
,
1232
(
1996
).
15.
W.
Shockley
and
W.
Read
,
Phys. Rev.
87
,
835
(
1952
).
16.
A. A.
Istratov
,
H.
Hieslmair
, and
E. R.
Weber
,
Appl. Phys. A: Mater. Sci. Process.
69
,
13
(
1999
).
17.
A. R.
Beatti
and
P. T.
Landsberg
,
Proc. R. Soc. London, Ser. A
429
,
16
(
1958
).
18.
J.
Dziewior
and
W.
Schmid
,
Appl. Phys. Lett.
31
,
346
(
1977
).
19.
D.
Macdonald
and
A.
Cuevas
,
Appl. Phys. Lett.
74
,
1710
(
1999
).
20.
D. H.
Neuhaus
,
P. J.
Cousins
, and
A. G.
Aberle
, in
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
(
IEEE
,
New York
,
2003
).
21.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
).
22.
Y.
Ogita
,
J. Appl. Phys.
79
,
6954
(
1996
).
23.
I. Wolfram Research
,
Mathematica Edition: Version 6
(
Wolfram Research, Inc.
,
Champaign
,
2007
).
24.
M. Y.
Ghannam
,
S. F.
Mahmoud
, and
J. F.
Nijs
,
J. Appl. Phys.
81
,
2665
(
1997
).
25.
R. K.
Ahrenkiel
,
B. M.
Keyes
, and
S.
Johnston
,
Surf. Eng.
16
,
54
(
2000
).
26.
K.
Lauer
,
A.
Laades
,
H.
Uebensee
, and
A.
Lawerenz
,
Mater. Sci. Eng., B
(in press).
27.
F. P.
Giles
,
R. J.
Schwartz
, and
J. L.
Gray
, in
Proceedings of the 23rd IEEE Photovoltaics Specialists Conference
(
IEEE
,
New York
,
1993
), p.
299
.
28.
A.
Istratov
,
T.
Buonassisi
,
R.
McDonald
,
A.
Smith
,
R.
Schindler
,
J.
Rand
,
J.
Kalejs
, and
E. R.
Weber
,
J. Appl. Phys.
94
,
6552
(
2003
).
29.
K.
Graff
and
H.
Pieper
,
J. Electrochem. Soc.
128
,
669
(
1981
).
30.
D.
Macdonald
,
L.
Geerligs
, and
A.
Azzizi
,
J. Appl. Phys.
95
,
1021
(
2004
).
31.
D.
Macdonald
,
A.
Cuevas
, and
J.
Wong-Leung
,
J. Appl. Phys.
89
,
7932
(
2001
).
32.
J.
Henze
,
P.
Pohl
,
C.
Schmiga
,
M.
Dhamrin
,
T.
Saitoh
,
I.
Yamaga
, and
J.
Schmidt
, in
Proceedings of the 20th European Photovoltaic Solar Energy Conference
(
WIP
,
Munich
,
2005
), p.
769
.
33.
D.
Macdonald
,
J.
Tan
, and
T.
Trupke
,
J. Appl. Phys.
103
,
073710
(
2008
).
34.
C.
Swiatkowski
, in
Recombination Lifetime Measurements in Silicon
, edited by
D. C.
Gupta
,
W. M.
Hughes
, and
F. R.
Bacher
(
ASTM
,
West Conshohocken
,
1998
), p.
80
.
35.
P. J.
Cousins
,
D. H.
Neuhaus
, and
J. E.
Cotter
,
J. Appl. Phys.
95
,
1854
(
2004
).
36.
M. C.
Schubert
,
S.
Riepe
,
S.
Bermejo
, and
W.
Warta
,
J. Appl. Phys.
99
,
114908
(
2006
).
You do not currently have access to this content.