The performance of organic electronic devices, such as organic light emitting diodes, transistors, or organic solar cells, depends critically on the chemical composition of the metal/organic and organic/metal interfaces which inject or extract charges into or from the device. By combining a number of techniques, such as x-ray photoemission spectroscopy (XPS) sputter depth profiling, XPS itself, secondary ion mass spectrometry, and laser desorption/ionization time-of-flight mass spectrometry, we investigate the reasons for differences in charge injection from metallic bottom and top contacts into either preferentially hole or preferentially electron transporting materials. We find that the deposition of metal onto organic semiconductors creates an organic-inorganic mixed interlayer in between the organic bulk material and the metal. In the case of electron injection, this interlayer acts as highly doped injection layer, while for hole injection, no significant improvement is visible. In addition to the self-doping, some cathode materials form partially oxidized metal-on-organic interfaces caused by oxygen in the residual gas. Depending on the evaporation conditions, the oxygen content varies. The effect of the oxygen incorporation, the origin, and the binding behavior in between the metal-on-organic interlayer is investigated and discussed. In contrast, organic materials evaporated on top of metals create an abrupt interface, where no self-doping effect is observed.
Skip Nav Destination
Article navigation
15 November 2008
Research Article|
November 18 2008
Self-doping and partial oxidation of metal-on-organic interfaces for organic semiconductor devices studied by chemical analysis techniques
Sebastian Scholz;
Sebastian Scholz
a)
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Qiang Huang;
Qiang Huang
b)
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Michael Thomschke;
Michael Thomschke
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Selina Olthof;
Selina Olthof
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Philipp Sebastian;
Philipp Sebastian
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Karsten Walzer;
Karsten Walzer
c)
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Karl Leo;
Karl Leo
1Institut für Angewandte Photophysik,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Steffen Oswald;
Steffen Oswald
2
Leibniz-Institut für Festkörper-und Werkstoffforschung Dresden
, D-01069 Dresden, Germany
Search for other works by this author on:
Cathrin Corten;
Cathrin Corten
3Fachrichtung Chemie und Lebensmittelchemie,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Dirk Kuckling
Dirk Kuckling
d)
3Fachrichtung Chemie und Lebensmittelchemie,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: [email protected].
b)
Present address: Novaled AG, Tatzberg 49, 01307 Dresden, Germany.
c)
Present address: Heliatek GmbH, Liebigstrasse 26, 01187 Dresden, Germany.
d)
Present address: Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany.
J. Appl. Phys. 104, 104502 (2008)
Article history
Received:
August 01 2008
Accepted:
September 23 2008
Citation
Sebastian Scholz, Qiang Huang, Michael Thomschke, Selina Olthof, Philipp Sebastian, Karsten Walzer, Karl Leo, Steffen Oswald, Cathrin Corten, Dirk Kuckling; Self-doping and partial oxidation of metal-on-organic interfaces for organic semiconductor devices studied by chemical analysis techniques. J. Appl. Phys. 15 November 2008; 104 (10): 104502. https://doi.org/10.1063/1.3018716
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Defects in semiconductors
Cyrus E. Dreyer, Anderson Janotti, et al.
Experimental investigation of electron-impact reactions in the plasma discharge of a water-vapor Hall thruster
K. Shirasu, H. Koizumi, et al.