In this paper we show that magnetostatic models of permanent magnets, based on distributions of magnetic charge and shaped by a helicoidal geometry of cylindrical type, have the volume charge density ρM equal to zero. This result is valid when (i) the modulus of the vector physical magnetization density M has a constant value in all the points of the helicoidal magnet and (ii) M has the same direction of an oriented straight line having a constant angle with respect to the normal line of a cylindrical helix. Another case study concerns the permanent magnets with conchospiral geometry and magnetization M. For this kind of magnet we show that, in general, ρM0. Furthermore, in relation to the nonobvious result ρM=0 obtained for the cylindrical helicoidal permanent magnets, some geometrical physical considerations are illustrated. With reference to these observations, in order to understand if ρM is equal to zero or not without considering divergence computation, the possibility of defining a criterion based only on the geometry and magnetization of the magnet is discussed. Finally, an application of the results obtained from the previous analysis is shown. After drawing an analytical formulation of the surface charge density σM relative to a cylindrical helicoidal magnet, a complete evaluation of the field distribution around this magnet is performed. The results are presented by using cylindrical polar graphics of the magnetic flux B.

1.
W. F.
Brown
, Jr.
,
Am. J. Phys.
19
,
290
(
1951
).
2.
W. F.
Brown
, Jr.
,
Am. J. Phys.
19
,
333
(
1951
).
4.
E. P.
Furlani
,
J. Appl. Phys.
79
,
4692
(
1996
).
6.
Q.
Sun
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
69
,
054409
(
2004
).
7.
E. P.
Furlani
,
Permanent Magnet and Electromechanical Devices
(
Academic
,
New York
,
2001
), pp.
208
231
.
8.
P. P.
Silvester
and
R. L.
Ferrari
,
Finite Elements for Electrical Engineers
(
Cambridge University Press
,
New York
,
1990
).
9.
R.
Corazzi
, in
Geometria, Scienza del Disegno
(
Pitagora Editrice
,
Bologna, Italy
,
2005
).
10.
K. N.
Boyadzhiev
,
Coll. Math. J.
30
,
23
(
1999
).
11.
I. N.
Bronshtein
,
K. A.
Semendyayev
,
G.
Musiol
, and
H.
Muelig
,
Handbook of Mathemathics
, 4th ed. (
Spinger-Verlag
,
Berlin
,
2003
), pp.
645
651
.
12.
H. J.
Bartsch
, in
Manuale Delle Formule Matematiche
, Italian edition (
U. Hoepli
,
Milan
,
2002
), p.
218
.
13.
M.
Abramowitz
and
I. A.
Stegun
, in
Handbook of Mathematical Functions
,
Applied Mathematics Series
No. 55, 10th ed., edited by
M.
Abramowitz
and
I. A.
Stegun
(
National Bureau of Standards
,
Washington, D. C.
,
1972
), pp.
587
606
.
14.
B. C.
Carlson
,
J. Symb. Comput.
28
,
739
(
1999
).
15.
M.
Garg
,
V.
Katta
, and
S. L.
Kalla
,
Appl. Math. Comput.
131
,
607
(
2002
).
16.
D.
Cvijovic
and
J.
Klinowski
,
J. Comput. Appl. Math.
106
,
169
(
1999
).
17.
B. A.
Mamedov
,
R.
Tapramaz
, and
Z.
Merdan
,
Appl. Math. Comput.
168
,
333
(
2005
).
18.
H.
Cohen
,
F. V.
Villegas
, and
D.
Zagier
,
Exp. Math.
9
,
1
(
2000
).
19.
S.
Ehrich
,
J. Comput. Appl. Math.
127
,
153
(
2001
).
20.
J. D.
Faires
and
R. L.
Burden
,
Numerical Methods
(
PWS
,
Boston
,
1993
), pp.
95
96
.
21.
J.
Berntsen
,
T. O.
Espelid
, and
A.
Genz
,
ACM Trans. Math. Softw.
17
,
437
(
1991
).
22.
MATHEMATICA, www.wolfram.com
23.
S.
Noguchi
,
T.
Yoshigai
, and
H.
Yamashita
,
IEEE Trans. Magn.
41
,
5
(
2005
).
24.
D.
Savalle
,
G.
Meunier
, and
J. C.
Sabonnadière
,
IEEE Trans. Magn.
24
,
378
(
1988
).
You do not currently have access to this content.