Single-shot measurement of a terahertz field pulse waveform by electro-optic sampling using a chirped optical pulse and a spectrometer was demonstrated by and Jiang and Zhang [Appl. Phys. Lett.72, 1945 (1998)]. We have performed an experimental and theoretical investigation into the dependence of the waveform thus measured on the chirp rate and spectral resolution. It was found that the waveform exhibits multicyclic behavior at a chirp rate of 0.24THz2, which corresponds to a chirped-pulse width of over 10 ps, for the monocyclic original terahertz field, while it approaches the monocyclic behavior with decreasing pulse width. Further, broadening of the spectral resolution of the spectrometer gives rise to a monocyclic waveform in the chirp rate range where the waveform is expected to be multicyclic. In addition, we have derived an analytical expression for the terahertz field pulse waveform thus measured without using the method of stationary phase. The theoretical results were found to be consistent with measured ones. Finally, we examined the spectral bandwidth and resolution of terahertz spectroscopy using this method.

1.
S.
Nashima
,
O.
Morikawa
,
K.
Takata
, and
M.
Hangyo
,
J. Appl. Phys.
90
,
837
(
2001
).
2.
S. R.
Keiding
,
J. Phys. Chem. A
101
,
5250
(
1997
).
3.
B. N.
Flanders
,
R. A.
Cheville
,
D.
Grischkowsky
, and
N. F.
Scherer
,
J. Phys. Chem.
100
,
11824
(
1996
).
4.
J. T.
Kindt
and
C. A.
Schmuttenmaer
,
J. Phys. Chem.
100
,
10373
(
1996
).
5.
C.
Rønne
,
K.
Jensby
,
B. J.
Loughnane
,
J.
Fourkas
,
O. F.
Nielsen
, and
S. R.
Keiding
,
J. Chem. Phys.
113
,
3749
(
2000
).
6.
S. E.
Whitmire
,
D.
Wolpert
,
A. G.
Markelz
,
J. R.
Hillebrecht
,
J.
Galan
, and
R. R.
Birge
,
Biophys. J.
85
,
1269
(
2003
).
7.
A. G.
Markelz
,
A.
Roitberg
, and
E. J.
Heilweil
,
Chem. Phys. Lett.
320
,
42
(
2000
).
8.
M.
Brucherseifer
,
M.
Nagel
,
P. H.
Bolivar
, and
H.
Kurz
,
Appl. Phys. Lett.
77
,
4049
(
2000
).
9.
Z.
Jiang
and
X. -C.
Zhang
,
Appl. Phys. Lett.
72
,
1945
(
1998
).
10.
B.
Yellampalle
,
K. Y.
Kim
,
G.
Rodriguez
,
J. H.
Glownia
, and
A. J.
Taylor
,
Opt. Express
15
,
1376
(
2007
).
11.
K. Y.
Kim
,
B.
Yellampalle
,
G.
Rodriguez
,
R. D.
Averitt
,
A. J.
Taylor
, and
J. H.
Glownia
,
Appl. Phys. Lett.
88
,
041123
(
2006
).
12.
B.
Yellampalle
,
K. Y.
Kim
,
G.
Rodriguez
,
J. H.
Glownia
, and
A. J.
Taylor
,
Appl. Phys. Lett.
87
,
211109
(
2005
).
13.
F. G.
Sun
,
Z.
Jiang
, and
X. -C.
Zhang
,
Appl. Phys. Lett.
73
,
2233
(
1998
).
14.
J.
Shan
,
A. S.
Weling
,
E.
Knoesel
,
L.
Bartels
,
M.
Bonn
,
A.
Nahata
,
G. A.
Reider
, and
T. F.
Heinz
,
Opt. Lett.
25
,
426
(
2000
).
15.
E.
Donth
,
The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials
(
Springer
,
Berlin
,
2001
).
16.
Relaxations in Complex Systems 5: Proceedings of the Fifth International Discussion Meetings on Relaxations in Complex Systems
, edited by
F.
Affouard
,
M.
Descamps
, and
K. L.
Ngai
(
Elsevier
,
New York
,
2006
).
17.
W.
Doster
,
S.
Cusack
, and
W.
Petry
,
Nature (London)
337
,
754
(
1989
).
18.
M.
Kataoka
,
H.
Kamikubo
,
J.
Yunoki
,
F.
Tokunaga
,
T.
Kanaya
,
Y.
Izumi
, and
K.
Shibata
,
J. Phys. Chem. Solids
60
,
1285
(
1999
).
19.
H.
Nakagawa
,
M.
Kataoka
,
Y.
Joti
,
A.
Kitao
,
K.
Shibata
,
A.
Tokuhisa
,
I.
Tsukushi
, and
N.
Go
,
Physica B
385–386
,
871
(
2006
).
20.
S. V.
Adichtchev
,
N. V.
Surovtsev
,
J.
Wiedersich
,
A.
Brodin
,
V. N.
Novikov
, and
E. A.
Rössler
,
J. Non-Cryst. Solids
353
,
1491
(
2007
).
21.
R.
Mcelroy
and
K.
Wynne
,
Phys. Rev. Lett.
79
,
3078
(
1997
).
22.
E.
Knoesel
,
M.
Bonn
,
J.
Shan
,
F.
Wang
, and
T. F.
Heinz
,
J. Chem. Phys.
121
,
394
(
2004
).
23.
K. Y.
Kim
,
B.
Yellampalle
,
J. H.
Glownia
,
A. J.
Taylor
, and
G.
Rodriguez
,
Phys. Rev. Lett.
100
,
135002
(
2008
).
24.
K. Y.
Kim
,
B.
Yellampalle
,
G.
Rodriguez
, and
J. H.
Glownia
,
Bull. Am. Phys. Soc.
50
,
117
(
2005
).
25.
L.
Duvillaret
,
F.
Garet
, and
J. L.
Coutaz
,
IEEE J. Sel. Top. Quantum Electron.
2
,
739
(
1996
).
You do not currently have access to this content.