We report the use of focused surface acoustic waves (SAWs) generated on 128° rotated Y-cut X-propagating lithium niobate (LiNbO3) for enhancing the actuation of fluids and the manipulation of particle suspensions at microscale dimensions. In particular, we demonstrate increased efficiency and speed in carrying out particle concentration/separation and in generating intense micromixing in microliter drops within which acoustic streaming is induced due to the focused SAW beneath the drop. Concentric circular and elliptical single-phase unidirectional transducers (SPUDTs) were used to focus the SAW. We benchmark our results against a straight SPUDT which does not cause focusing of the SAW. Due to the increased wave intensity and asymmetry of the wave, we found both circular and elliptical SPUDTs concentrate particles in under 1 s, which is one order of magnitude faster than the straight SPUDT and several orders of magnitude faster than conventional microscale devices. The concentric circular SPUDT was found to be most effective at a given input power since it generated the largest azimuthal velocity gradient within the fluid to drive particle shear migration. On the other hand, the concentric elliptical SPUDT generated the highest micromixing intensity due to the more narrowly focused SAW radiation that substantially enhances acoustic streaming in the fluid.

1.
B.
Haab
,
A.
Paulovich
,
N.
Anderson
, and
A.
Clark
,
Mol. Cell. Proteomics
5
,
1996
(
2006
).
2.
H.
Stone
,
A.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
3.
T.
Squires
and
S.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
4.
L.
Yeo
,
D.
Hou
,
S.
Maheshswari
, and
H.
Chang
,
Appl. Phys. Lett.
88
,
233512
(
2006
).
5.
D.
Arifin
,
L.
Yeo
, and
J.
Friend
,
Biomicrofluidics
1
,
014103
(
2007
).
6.
H.
Li
,
J.
Friend
, and
L.
Yeo
,
Biomed. Microdevices
9
,
647
(
2007
).
7.
H.
Chang
,
AlChE J.
53,
2486
(
2007
).
8.
G.
Walker
and
D.
Beebe
,
Lab Chip
2
,
57
(
2002
).
9.
L.
Yeo
,
J.
Friend
, and
D.
Arifin
,
Appl. Phys. Lett.
89
,
103516
(
2006
).
10.
N.
Nguyen
and
Z.
Wu
,
J. Micromech. Microeng.
15
,
R1
(
2005
).
11.
J.
Zahn
,
A.
Deshmukh
,
A.
Pisano
, and
D.
Liepmann
,
Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS)
,
2001
, pp.
503
506
.
12.
J.
Deval
,
T.
Patrick
, and
C.
Ho
,
Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS)
,
2002
, pp.
36
39
.
13.
H.
Mao
,
T.
Yang
, and
P.
Cremer
,
J. Am. Chem. Soc.
124
,
4432
(
2002
).
14.
J.
Tsai
and
L.
Lin
,
Sens. Actuators, A
97–98
,
665
(
2002
).
15.
S.
Shiokawa
and
J.
Kondoh
,
Jpn. J. Appl. Phys., Part 1
43
,
2799
(
2004
).
16.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z.
v. Guttenberg
,
Anal. Bioanal. Chem.
379
,
982
(
2004
).
17.
K.
Sritharan
,
C. J.
Strobl
,
M.
Schneider
,
A.
Wixforth
, and
Z.
Guttenberg
,
Appl. Phys. Lett.
88
,
054102
(
2006
).
18.
L.
Rayleigh
,
Philos. Mag.
10
,
364
(
1905
).
19.
D.
Laser
and
J.
Santiago
,
J. Micromech. Microeng.
14
,
R35
(
2004
).
20.
A.
Sano
,
Y.
Matsui
, and
S.
Shiokawa
,
Jpn. J. Appl. Phys., Part 1
37
,
2979
(
1998
).
21.
W. L.
Nyborg
, in
Acoustic Streaming
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic
,
New York
,
1965
), Vol.
2B
, Chap. 11, pp.
265
329
.
22.
C.
Bradley
,
J. Acoust. Soc. Am.
100
,
1399
(
1996
).
23.
A.
Wixforth
,
Superlattices Microstruct.
33
,
389
(
2003
).
24.
Z.
Guttenberg
,
A.
Rathgeber
,
J.
Radler
,
A.
Wixforth
,
M.
Kostur
,
M.
Schindler
, and
P.
Talkner
,
Phys. Rev. E
70
,
056311
(
2004
).
25.
M.
Kurosawa
,
P.
Nayanbuu
, and
K.
Asai
,
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Kobe, Japan
, 20–24 July 2003, Vol.
2
, pp.
1327
1331
.
26.
C.
Campbell
,
Surface Acoustic Wave Devices for Mobile and Wireless Communications
(
Academic
,
New York
,
1998
).
27.
M.
Tan
,
J.
Friend
, and
L.
Yeo
, in
16th Australasian Fluid Mechanics Conference (AFMC)
, Gold Coast, Australia,
2007
a, pp.
790
793
.
28.
M.
Tan
,
J.
Friend
, and
L.
Yeo
,
Lab Chip
7
,
618
(
2007
).
29.
L.
Yeo
and
H.
Chang
,
Mod. Phys. Lett. B
19
,
549
(
2005
).
30.
S.
Ito
,
M.
Sugimoto
,
Y.
Matsui
, and
J.
Kondoh
,
Jpn. J. Appl. Phys., Part 1
46
,
4718
(
2007
).
31.
D.
Leighton
and
A.
Acrivos
,
J. Fluid Mech.
181
,
415
(
1987
).
32.
C.
Hartmann
,
P.
Wright
,
R.
Kansy
, and
E.
Garber
,
Ultrasonics Symposium
,
1982
, pp.
40
45
.
33.
R.
White
and
F.
Voltmer
,
Appl. Phys. Lett.
7
,
314
(
1965
).
34.
C.
Hartmann
and
B.
Abbott
,
Proc. IEEE
1
,
79
(
1989
).
35.
S.
Nakagomi
,
H.
Asano
,
H.
Tanaka
,
T.
Omori
,
K.
Hashimoto
, and
M.
Yamaguchi
,
Jpn. J. Appl. Phys., Part 1
42
,
3152
(
2003
).
36.
S.
Fang
,
S.
Zhang
, and
Z.
Lu
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
36
,
178
(
1989
).
37.
T. -T.
Wu
,
H. -T.
Tang
,
Y. -C.
Chen
, and
P. -L.
Liu
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1384
(
2005
).
38.
T.
Wu
,
H.
Tang
, and
Y.
Chen
,
J. Phys. D
38
,
2986
(
2005
).
39.
M.
Tan
,
J.
Friend
, and
L.
Yeo
,
Appl. Phys. Lett.
91
,
224101
(
2007
).
40.
K.
Hashimoto
,
H.
Kamizuma
,
M.
Watanabe
,
T.
Omori
, and
M.
Yamaguchi
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1072
(
2007
).
41.
K.
Telschow
,
V.
Deason
,
D.
Cottle
, and
J.
Larson
 III
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
1279
(
2003
).
42.
S.
Wang
,
Y.
Lai
,
Y.
Ben
, and
H.
Chang
,
Ind. Eng. Chem. Res.
43
,
2902
(
2004
).
43.
A.
Sano
,
Y.
Matsui
, and
S.
Shiokawa
,
Jpn. J. Appl. Phys., Part 1
37
,
2979
(
1998
).
You do not currently have access to this content.