The variational extremum method is further extended to give the full coverage for the inclined (tilted) grain-boundary (GB) configuration with respect to the sidewalls of a bicrystal thin solid film having strong anisotropic specific surface Gibbs free energy associated with the singular directions (faceting). A set of critical computer simulation experiments is performed on the asymmetrically disposed (inclination) bicrystal thin metallic films having four- and sixfold anisotropic specific surface Gibbs free energies to demonstrate the various GB-groove root topologies. Special computer runs are also designed using the realistic structural and physicochemical properties to simulate the thermal grooving profile of polycrystalline alumina (Lucalox™), and tungsten, which undergone heat treatments for 90 and 120 min at 1650 and 1350°C in air and vacuum (104Pa), respectively. The simulation profiles almost perfectly agree with the published experimental atomic force microscopy photographs after linewidth matching procedures, and the simulations produced very accurate mean surface (mass) diffusivities of alumina and tungsten given by DAl2O36.45×1012m2/s and DW5.2×1013m2/s, respectively. These findings are in good agreement with the diffusivities reported in the literature.

1.
A.
Ramasubramaniam
and
V. B.
Shenoy
,
J. Appl. Phys.
95
,
7813
(
2004
).
2.
T. O.
Ogurtani
,
J. Chem. Phys.
124
,
144706
(
2006
).
3.
T. O.
Ogurtani
,
Phys. Rev. B
73
,
235408
(
2006
).
4.
W.
Lu
and
Z.
Suo
,
Phys. Rev. B
65
,
085401
(
2002
).
5.
E.
Rabkin
,
L.
Klinger
, and
V.
Semenov
,
Acta Mater.
48
,
1533
(
2000
).
6.
L.
Klinger
and
E.
Rabkin
,
Interface Sci.
9
,
55
(
2001
).
7.
W.
Zhang
,
P.
Sachenko
, and
I.
Gladwell
,
Acta Mater.
107
,
16
(
2004
).
8.
T.
Xin
and
H.
Wong
,
Acta Mater.
51
,
2305
(
2003
).
9.
A.
Ramasubramaniam
and
V. B.
Shenoy
,
Acta Mater.
53
,
2943
(
2005
).
10.
Z.
Suo
,
Adv. Appl. Mech.
33
,
193
(
1997
).
11.
T. O.
Ogurtani
,
J. Appl. Phys.
102
,
063517
(
2007
).
12.
D.
Min
and
H.
Wong
,
J. Appl. Phys.
100
,
053523
(
2006
).
13.
C.
Herring
, in
The Physics of Powder Metallurgy
, edited by
W. E.
Kinston
(
McGraw-Hill
,
New York
,
1951
), p.
143
.
14.
T. O.
Ogurtani
,
Phys. Rev. B
74
,
155422
(
2006
).
15.
S. R.
De Groot
,
Thermodynamics of Irreversible Processes
(
North-Holland
,
Amsterdam
,
1961
), p.
59
.
16.
L.
Onsager
,
Phys. Rev.
37,
405
(
1931
);
Phys. Rev.
38,
2265
(
1931
).
17.
C. W.
Gear
,
Numerical Initial Value Problems in Ordinary Differential Equations
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1971
), p.
109
.
18.
G.
Dahlquist
,
Proc. Symp. Appl. Math.
15
,
147
(
1963
)
G.
Dahlquist
,
BIT, Nord. Tidskr. Inf.behandl.
3
,
27
(
1963
).
19.
T. O.
Ogurtani
and
E. E.
Oren
,
J. Appl. Phys.
96
,
7246
(
2004
).
20.
T. O.
Ogurtani
and
E. E.
Oren
,
Int. J. Solids Struct.
42
,
3918
(
2005
).
21.
W. W.
Mullins
,
J. Appl. Phys.
28
,
333
(
1957
).
22.
T. O.
Ogurtani
and
O.
Akyildiz
,
J. Appl. Phys.
97
,
093520
(
2005
).
23.
T.
Xin
and
H.
Wong
,
Surf. Sci. Lett.
487
L
529
(
2001
).
24.
T.
Xin
and
H.
Wong
,
Mater. Sci. Eng., A
364
,
287
(
2004
).
25.
P.
Du
and
F.
Wong
,
Scr. Mater.
55
,
1171
(
2006
).
26.
N. E.
Munoz
,
S. R.
Gilliss
, and
C. B.
Carter
,
Philos. Mag. Lett.
84
,
22
(
2004
).
27.
W.
Shin
,
W. -S.
Seo
, and
K.
Koumoto
,
J. Eur. Ceram. Soc.
18
,
595
(
1998
).
28.
K. -Y.
Lee
and
E. D.
Case
,
Eur. Phys. J.: Appl. Phys.
8
,
197
(
1999
).
29.
P.
Sachenko
,
J. H.
Schneibel
,
J. G.
Swadener
, and
W.
Zhang
,
Philos. Mag. Lett.
80
,
627
(
2000
).
30.
L. E.
Murr
,
Interfacial Phenomena in Metals and Alloys
(
Addison-Wesley
,
Reading, MA
,
1975
), pp.
124
132
.
31.
P.
Sachenko
,
J. H.
Schneibel
, and
W.
Zhang
,
Philos. Mag. A
82
,
815
(
2002
).
32.
R. M.
German
,
Sintering Theory and Practice
(
Wiley
,
New York
,
1996
), p.
533
.
33.
W.
Zhang
,
P.
Sachenko
, and
I.
Gladwell
,
Acta Mater.
52
,
107
(
2004
).
34.
W. W.
Mullins
,
J. Appl. Phys.
27
,
900
(
1956
).
35.
H.
Zhang
and
H.
Wong
,
Acta Mater.
50
,
1983
(
2002
).
36.
H.
Zhang
and
H.
Wong
,
Acta Mater.
50
,
1995
(
2002
).
You do not currently have access to this content.