The (GeTe)1γ(Sb2Te3)γ pseudobinary system has, over almost its entire composition range, two kinds of crystalline phase: one is a metastable phase with a NaCl-type structure and the other is a spectrum of stable phases with homologous structures. In the metastable phase, Ge/Sb atoms and intrinsic vacancies occupy the Na sites; on the other hand, Te atoms are located at the Cl sites. These vacancies are produced by following γ/1+2γ to ensure the stoichiometry of the metastable pseudobinary compound. This metastable phase obstinately holds its NaCl-type structure and resists transformation to stable homologous structures, even at high temperatures on the GeTe-rich side of the system. In GeTe (γ=0), the NaCl-type atomic configuration itself is the stable structure. GeTe has, as is well known, a high-temperature cubic phase and a low-temperature rhombohedral phase. This GeTe and the pseudobinary compounds containing a small quantity of Sb2Te3 have their single-phase regions not on the GeTeSb2Te3 tie line but at Ge-poor sides off the line: in other words, the Na sites of these off-stoichiometric compounds have some excess vacancies besides the intrinsic vacancies. As Sb2Te3 is further added to GeTe, however, the structural transformation temperature continuously falls and the single-phase region converges on the tie line as the excess vacancies at the Na site disappear, which change its electrical property from metallic to semiconducting conductivity. The low-temperature rhombohedral phase is present up to near γ=0.14. The NaCl-type metastable phase becomes unstable with increased Sb2Te3; after subjecting the compound Ge8Sb2Te11(γ=0.11) to heat treatment for 15 days at 773 K, a stable homologous structure appeared.

1.
T.
Matsunaga
,
N.
Yamada
, and
Y.
Kubota
,
Acta Crystallogr., Sect. B: Struct. Sci.
60
,
685
(
2004
).
2.
T.
Matsunaga
and
N.
Yamada
,
Phys. Rev. B
69
,
104111
(
2004
).
3.
T.
Matsunaga
,
R.
Kojima
,
N.
Yamada
,
K.
Kifune
,
Y.
Kubota
,
Y.
Tabata
, and
M.
Takata
,
Inorg. Chem.
45
,
2235
(
2006
).
4.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
,
N.
Akahira
, and
M.
Takao
,
J. Appl. Phys.
69
,
2849
(
1991
).
5.
E.
Nishibori
,
M.
Takata
,
K.
Kato
,
M.
Sakata
,
Y.
Kubota
,
S.
Aoyagi
,
Y.
Kuroiwa
,
M.
Yamakata
, and
N.
Ikeda
,
Nucl. Instrum. Methods Phys. Res. A
467
,
1045
(
2001
).
6.
H. M.
Rietveld
,
J. Appl. Crystallogr.
2
,
65
(
1969
).
7.
F.
Izumi
and
T.
Ikeda
,
Mater. Sci. Forum
321
,
198
(
2000
).
8.
N. Kh.
Abrikosov
,
V. F.
Bankina
,
L. V.
Poretskaya
,
L. E.
Shelimova
, and
E. V.
Skudnova
,
Semiconducting II-VI, IV-VI, and V-VI Compounds
(
Plenum
,
New York
,
1969
).
9.
S. K.
Bahl
and
K. L.
Chopra
,
J. Appl. Phys.
41
,
2196
(
1970
).
10.
T.
Chattopadhyay
,
J. X.
Boucherle
, and
H. G.
von Schnering
,
J. Phys. C
20
,
1431
(
1987
).
11.
M.
Wuttig
,
D.
Lüsebrink
,
D.
Wamwangi
,
W.
Wełnic
,
M.
Gilleßen
, and
R.
Dronskowski
,
Nat. Mater.
6
,
122
(
2007
).
12.
H.
Yukawa
,
M.
Toda
, and
R.
Kubo
,
Statistical Physics
(
Iwanami
,
Tokyo
,
1978
).
13.
K. M.
Rabe
and
J. D.
Joannpoulos
,
Phys. Rev. Lett.
59
,
570
(
1987
).
14.
O. G.
Karpinsky
,
L. E.
Shelimova
,
M. A.
Kretova
, and
J. P.
Fleurial
,
J. Alloys Compd.
268
,
112
(
1998
).
15.
T.
Matsunaga
,
R.
Kojima
,
N.
Yamada
,
K.
Kifune
,
Y.
Kubota
, and
M.
Takata
,
Appl. Phys. Lett.
90
,
161919
(
2007
).
16.
L. E.
Shelimova
,
O. G.
Karpinskii
,
V. S.
Zemskov
, and
P. P.
Konstantinov
,
Inorg. Mater.
36
,
302
(
2000
).
17.
H. W.
Shu
,
S.
Jaulmes
, and
J.
Flahaut
,
J. Solid State Chem.
74
,
277
(
1988
).
18.
N.
Yamada
,
R.
Kojima
,
M.
Uno
,
T.
Akiyama
,
H.
Kitaura
,
K.
Narumi
, and
K.
Nishiuchi
,
Technical Digest of Optical Data Storage Topical Meeting
, Sante Fe, NM, 22, April,
2001
(unpublished).
19.
J. J.
Kim
,
K.
Kobayashi
,
E.
Ikenaga
,
M.
Kobata
,
S.
Ueda
,
T.
Matsunaga
,
K.
Kifune
,
R.
Kojima
, and
N.
Yamada
,
Phys. Rev. B
76
,
115124
(
2007
).
20.
21.
T.
Matsunaga
and
N.
Yamada
,
Jpn. J. Appl. Phys., Part 1
41
,
1674
(
2002
).
22.
T.
Matsunaga
and
N.
Yamada
,
Jpn. J. Appl. Phys.
43
,
4704
(
2004
).
You do not currently have access to this content.