First principles electronic structure and transport calculations are used to demonstrate the impact of the electric polarization on electron and spin transport in FeBaTiO3Fe multiferroic tunnel junctions (MFTJs). We find that the polarization of BaTiO3 reduces the tunneling conductance, as compared to a nonpolarized barrier, due to the change in the electronic structure driven by ferroelectric displacements, similar to that found previously for PtBaTiO3Pt. For the MFTJ, however, this effect has different magnitudes for majority- and minority-spin channels and for parallel and antiparallel orientations of the magnetization of the electrodes. As a result, we find a substantial drop in the spin polarization of the tunneling current in the parallel configuration and an inversion of the magnetoresistance as polarization of the barrier is turned on.

1.
E. Y.
Tsymbal
,
O. N.
Mryasov
, and
P. R.
LeClair
,
J. Phys.: Condens. Matter
15
,
R109
(
2003
).
2.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
);
J. F.
Scott
,
J. Phys.: Condens. Matter
18
,
R361
(
2006
).
[PubMed]
3.
D. D.
Fong
 et al.,
Science
304
,
1650
(
2004
).
4.
C.
Lichtensteiger
 et al.,
Phys. Rev. Lett.
94
,
047603
(
2005
).
5.
D. A.
Tenne
 et al.,
Science
313
,
1614
(
2006
).
6.
J.
Junquera
and
Ph.
Ghosez
,
Nature (London)
422
,
506
(
2003
).
7.
N.
Sai
,
A. M.
Kolpak
, and
A. M.
Rappe
,
Phys. Rev. B
72
,
020101
(
2005
).
8.
C.-G.
Duan
,
R. F.
Sabirianov
,
W.-N.
Mei
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Nano Lett.
6
,
483
(
2006
).
9.
E. Y.
Tsymbal
and
H.
Kohlstedt
,
Science
313
,
181
(
2006
).
10.
Note that such a MFTJ is different from a junction in which the barrier itself is made of a material that exhibits multiferroic properties in the bulk [
M.
Gajek
 et al.,
Nat. Mater.
6
,
296
302
(
2007
)].
11.
M. Y.
Zhuravlev
 et al.,
Phys. Rev. Lett.
94
,
246802
(
2005
).
12.
M. Y.
Zhuravlev
 et al.,
Appl. Phys. Lett.
87
,
222114
(
2005
).
13.
J.
Velev
,
C.-G.
Duan
,
K. D.
Belashchenko
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
98
,
137201
(
2007
).
14.
C.-G.
Duan
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
97
,
047201
(
2006
).
15.
K.
Yamauchi
,
B.
Sanyal
, and
S.
Picozzi
,
Appl. Phys. Lett.
91
,
062506
(
2007
).
16.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
17.

Energy cutoff of 500eV in the plane wave expansion and a 10×10×1 Monkhorst-Pack k-point grid were used. Structural relaxations are performed until the Hellman-Feynman forces on atoms become less than 20meVÅ.

18.
O. K.
Andersen
,
Phys. Rev. B
12
,
3060
(
1975
);
O. K.
Andersen
and
O.
Jepsen
,
Phys. Rev. Lett.
53
,
2571
(
1984
).
19.

We use atomic spheres of radii RBa=2.20Å, RTi=1.30Å, RO=0.96Å, and RFe=1.56Å. For space filling we introduce an empty sphere of radius RE=1.06Å at each interface. The quality of this choice of the spheres is tested against VASP calculations. A grid of 8×8×1k points was used. Combined correction was used and O-d, Ti-p, and Ba-p orbitals were downfolded.

20.
J.
Kudrnovský
 et al.,
Phys. Rev. B
62
,
15084
(
2000
).
21.
J. P.
Velev
,
K. D.
Belashchenko
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
96
,
119601
(
2006
).
22.
W. H.
Butler
,
X.-G.
Zhang
,
T. C.
Schulthess
, and
J. M.
MacLaren
,
Phys. Rev. B
63
,
054416
(
2001
).
23.
C.
Tiusan
 et al.,
Phys. Rev. Lett.
93
,
106602
(
2004
).
You do not currently have access to this content.