This study investigates the thermal conductivity and viscosity of copper nanoparticles in ethylene glycol. The nanofluid was prepared by synthesizing copper nanoparticles using a chemical reduction method, with water as the solvent, and then dispersing them in ethylene glycol using a sonicator. Volume loadings of up to 2% were prepared. The measured increase in thermal conductivity was twice the value predicted by the Maxwell effective medium theory. The increase in viscosity was about four times of that predicted by the Einstein law of viscosity. Analytical calculations suggest that this nanofluid would not be beneficial as a coolant in heat exchangers without changing the tube diameter. However, increasing the tube diameter to exploit the increased thermal conductivity of the nanofluid can lead to better thermal performance.

1.
A. S.
Ahuja
,
J. Appl. Phys.
46
,
3408
(
1975
).
2.
K. V.
Liu
,
S. U. S.
Choi
, and
K. E.
Kasza
, Argonne National Laboratory Report No. ANL-88-15 3,
1988
.
3.
H.
Masuda
,
A.
Ebata
,
K.
Teramae
, and
N.
Hishinuma
,
Netsu Bussei
4
,
227
(
1993
).
4.
S. U. S.
Choi
,
Proceedings of the American Society of Mechanical Engineers
,
1995
(unpublished), Vol.
66
, p.
99
.
5.
J. C.
Maxwell
,
A Treatise on Electricity and Magnetism
(
Clarendon
,
Oxford
,
1891
).
6.
P.
Keblinski
,
J. A.
Eastman
, and
D. G.
Cahill
,
Mater. Today
8
,
36
(
2005
).
7.
X.
Wang
and
A. S.
Majumdar
,
Int. J. Heat Mass Transfer
46
,
1
(
2007
).
8.
R.
Prasher
,
P.
Bhattacharya
, and
P. E.
Phelan
,
J. Heat Transfer
128
,
589
(
2006
).
9.
W.
Evans
,
J.
Fish
, and
P.
Keblinski
,
Appl. Phys. Lett.
88
,
093116
(
2006
).
10.
J.
Koo
and
C.
Kleinstreuer
,
J. Nanopart. Res.
6
,
577
(
2004
).
11.
P.
Keblinski
,
S. R.
Phillpot
,
S. U. S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
45
,
855
(
2002
).
12.
L.
Xue
,
P.
Keblinski
,
S. R.
Phillpot
,
S. U.-S.
Choi
, and
J. A.
Eastman
,
Int. J. Heat Mass Transfer
47
,
4277
(
2004
).
13.
P.
Ben-Abdallah
,
Appl. Phys. Lett.
89
,
113117
(
2006
).
14.
R.
Prasher
,
P. E.
Phelan
, and
P.
Bhattacharya
,
Nano Lett.
6
,
1529
(
2006
).
15.
H.
Zhu
,
C.
Zhang
,
S.
Liu
,
Y.
Tang
, and
Y.
Yin
,
Appl. Phys. Lett.
89
,
023123
(
2006
).
16.
R.
Prasher
,
W.
Evans
,
P.
Meakin
,
J.
Fish
,
P.
Phelan
, and
P.
Keblinski
,
Appl. Phys. Lett.
89
,
143119
(
2006
).
17.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
,
Appl. Phys. Lett.
78
,
718
(
2001
).
18.
H.
Zhu
,
C.
Zhang
, and
Y.
Yin
,
J. Cryst. Growth
270
,
722
(
2004
).
19.
M.
Liu
,
M. C.
Lin
,
C. Y.
Tsai
, and
C.
Wang
,
Int. J. Heat Mass Transfer
49
,
3028
(
2006
).
20.
T. S.
Chow
,
Phys. Rev. E
48
,
1977
(
1993
).
21.
Y.
Nagasaka
and
A.
Nagashima
,
J. Phys. E
14
,
1435
(
1981
).
22.
J.
Ma
, M.S. thesis, Massachusetts Institute of Technology,
2006
.
23.
C. W.
Nan
,
R.
Birringer
,
D. R.
Clarke
, and
H.
Gleiter
,
J. Appl. Phys.
81
,
6692
(
1997
).
24.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
25.
S.
Lee
,
S. U. S.
Choi
,
S.
Li
, and
J. A.
Eastman
,
J. Heat Transfer
121
,
280
(
1999
).
26.
R.
Prasher
,
D.
Song
, and
J.
Wang
,
Appl. Phys. Lett.
89
,
133108
(
2006
).
27.
F. P.
Incropera
and
D. P.
Dewitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
New York
,
1996
).
You do not currently have access to this content.