We studied the structure, morphology, and growth mechanism of self-organized La0.35Pr0.275Ca0.375MnO3 manganite nanorods grown on NdGaO3 substrates by pulsed-laser deposition. A two-layered structure was revealed: the first layer, about 120nm thick, was formed via layer-by-layer two-dimensional (2D) growth; the second layer consisted of a three-dimensional assembly of nanorods lying perpendicular to the 2D layer. The nanorods, averaging 50nm across and 180nm long, exhibited six crystallographic orientational domains, but only two predominated, both with their b axis lying parallel to that of substrate (parallel to the film normal) and with an in-plane a- and c-axis interchange to minimize local lattice mismatch. We consider that the formation of such self-assembled nanorods is related to the Stranski–Krastanov growth mode and discuss the associated energy terms of such growth based on density functional theory calculations.

1.
M.
Alexe
and
D.
Hesse
,
J. Mater. Sci.
41
,
1
(
2006
).
2.
E.
Vasco
,
S.
Karthaeuser
,
R.
Dittmann
,
J. Q.
He
,
C. L.
Jia
,
K.
Szot
, and
R.
Waser
,
Adv. Mater. (Weinheim, Ger.)
17
,
281
(
2005
).
3.
J. C.
Jiang
,
L. L.
Henry
,
K. I.
Gnanasekar
,
C. L.
Chen
, and
E. I.
Meletis
,
Nano Lett.
4
,
741
(
2004
).
4.
J. C.
Jiang
,
E. I.
Meletis
, and
K. I.
Gnanasekar
,
Appl. Phys. Lett.
80
,
4831
(
2002
).
5.
J. C.
Jiang
,
E. I.
Meletis
, and
C. L.
Chen
,
Appl. Phys. Lett.
86
,
163110
(
2005
).
6.
J. Q.
He
,
R.
Dittmann
,
S.
Karthaeuser
, and
E.
Vasco
,
Phys. Rev. B
74,
205410
(
2006
).
7.
E.
Vasco
,
R.
Dittmann
,
S.
Karthaeuser
, and
R.
Waser
,
Appl. Phys. Lett.
82
,
2497
(
2003
).
8.
I.
Szafraniak
,
C.
Harnagea
,
R.
Scholz
,
S.
Bhattacharyya
,
D.
Hesse
, and
M.
Alexe
,
Appl. Phys. Lett.
83
,
2211
(
2003
).
9.
J. E.
Prieto
and
I.
Markov
,
Phys. Rev. Lett.
98
,
176101
(
2007
).
10.
J. Q.
He
,
E.
Vasco
,
R.
Dittmann
, and
R. H.
Wang
,
Phys. Rev. B
73
,
125413
(
2006
).
11.
S.
Chaudhuri
,
R. C.
Budhani
,
J. Q.
He
, and
Y. M.
Zhu
,
Phys. Rev. B
76
,
132402
(
2007
).
12.
M.
Uehara
,
S.
Mori
,
C. H.
Chen
, and
S.-W.
Cheong
,
Nature (London)
399
,
516
(
1999
).
13.
J. C.
Loudon
,
N. D.
Mathur
, and
P. A.
Midgley
,
Nature (London)
420
,
797
(
2002
).
14.
O. I.
Lebedev
,
G.
Van Tendeloo
,
S.
Amelinckx
,
B.
Leibold
, and
H. U.
Habermeier
,
Phys. Rev. B
58
,
8065
(
1998
).
15.
T.
Wu
,
S. B.
Ogale
,
S. R.
Shinde
,
A.
Biswas
,
T.
Polletto
,
R. L.
Greene
,
T.
Venkatesan
, and
A. J.
Millis
,
J. Appl. Phys.
93
,
5507
(
2003
).
16.
J.
Collado
,
C.
Frontera
,
J.
Garcia-Munoz
,
C.
Ritter
,
M.
Brunelli
, and
M.
Aranda
,
Chem. Mater.
15
,
167
(
2003
).
17.
R.
Wang
,
J.
Gui
,
Y.
Zhu
, and
A. R.
Moodenbaugh
,
Phys. Rev. B
63
,
144106
(
2001
).
18.
J. Q.
He
,
R. H.
Wang
,
J. N.
Gui
, and
C.
Dong
,
Phys. Status Solidi B
229
,
1145
(
2002
).
19.
J. Q.
He
,
C. L.
Jia
,
J.
Schubert
, and
R. H.
Wang
,
J. Cryst. Growth
265
,
241
(
2004
).
20.
J. Q.
He
,
R. F.
Klie
,
G.
Logvenov
,
I.
Bozovic
, and
Y. M.
Zhu
,
J. Appl. Phys.
101
,
073906
(
2007
).
21.
X.
Zhang
,
A. A.
Demkov
,
H.
Li
,
X.
Hu
,
Y.
Wei
, and
J.
Kulik
,
Phys. Rev. B
68
,
125323
(
2003
).
22.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, Computer code WIEN2K, Technische Universitat Wien, Austria,
2001
.
23.

For the DFT-based interfacial energy calculations of LPCMO-NGO, we used an eight-atomic-layer supercell oriented in the (001) direction containing a four-atomic-layer LMO (or PMO, CMO) and a four-atomic-layer NGO. The calculated values of LMO, PMO, and CMO were then converted to La0.35Pr0.275Ca0.375MnO3 (LPCMO) using a linear average approximation. The muffin-tin radii (RMT) are chosen as 2.5bohrs for La, Pr, and Ca and 1.81bohrs for Mn and O. Since the growth occurred at high temperature, a quasicubic structure was used for both LPCMO and NGO.

24.
F.
Ricci
,
M.
Bevilacqua
,
F.
Miletto Granozio
, and
U.
Scotti di Uccio
,
Phys. Rev. B
65
,
155428
(
2002
).
You do not currently have access to this content.