The effects of P doping on the nanocrystalline formation in mixed-phase Si:H thin films were investigated using secondary-ion mass spectrometry, Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, and scanning Kelvin probe microscopy. We found that Si nanocrystallites in the intrinsic and weakly P-doped materials aggregate to form cone-shaped structures. The local workfunction of the nanocrystalline aggregation areas is larger than the surrounding amorphous areas. Increasing the P-doping level requires an increased hydrogen dilution to reach the similar Raman crystallinity. The nanocrystalline aggregation disappears in the heavily P-doped materials, but isolated nancrystallites appear. The effect of P-doping on the nanostructure is explained with the coverage of P-related radicals on the existing nanocrystalline surface during the deposition and the P segregation in grain boundaries, which prevent new nucleation on the surface of existing nanocrystallites.

1.
For a review, see
A. V.
Shah
,
J.
Meier
,
E.
Vallat-Sauvain
,
N.
Wyrsch
,
U.
Kroll
,
C.
Droz
, and
U.
Graf
,
Sol. Energy Mater. Sol. Cells
78
,
469
(
2003
).
2.
3.
H.
Fujiwara
,
J.
Koh
,
P. I.
Rovira
, and
R. W.
Collins
,
Phys. Rev. B
61
,
10832
(
2000
).
4.
R. W.
Collins
,
A. S.
Ferlauto
,
G. M.
Ferreira
,
C.
Chen
,
J.
Koh
,
R. J.
Koval
,
Y.
Lee
,
J. M.
Pearce
, and
C. R.
Wronski
,
Sol. Energy Mater. Sol. Cells
78
,
143
(
2003
).
5.
H.
Fujiwara
,
Y.
Toyoshima
,
M.
Kondo
, and
A.
Matsuda
,
Phys. Rev. B
60
,
13598
(
1999
).
6.
E.
Vallat-Sauvain
,
U.
Kroll
,
J.
Meier
,
A.
Shah
, and
J.
Pohl
,
J. Appl. Phys.
87
,
3137
(
2000
).
7.
T.
Mates
,
P. C. P.
Bronsveld
,
A.
Fejfar
,
B.
Rezek
,
J.
Kocka
,
J. K.
Rath
, and
R. E. I.
Schropp
,
J. Non-Cryst. Solids
352
,
1011
(
2006
).
8.
B.
Yan
,
C.-S.
Jiang
,
C. W.
Teplin
,
H. R.
Moutinho
,
M. M.
Al-Jassim
,
J.
Yang
, and
S.
Guha
,
J. Appl. Phys.
101
,
033712
(
2007
).
9.
C.-S.
Jiang
,
B.
Yan
,
H. R.
Moutinho
,
M. M.
Al-Jassim
,
J.
Yang
, and
S.
Guha
,
Amorphous and Polycrystalline Thin-Film Silicon Science and Technology
,
MRS Symposia Proceedings No. 989
(
Materials Research Society
,
Pittsburgh
,
2007
), p.
15
.
10.
C.-S.
Jiang
,
H. R.
Moutinho
,
M. M.
Al-Jassim
,
L. L.
Kazmerski
,
B.
Yan
,
J. M.
Owens
,
J.
Yang
, and
S.
Guha
,
Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion
,
Hawaii, USA
,
2006
, p.
1552
.
11.
J.
Kočka
,
A.
Fejfar
,
H.
Stuchlíková
,
J.
Stuchlík
,
P.
Fojtík
,
T.
Mates
,
B.
Rezek
,
K.
Luterová
, V. Švrček, and I. Pelant,
Sol. Energy Mater. Sol. Cells
78
,
493
(
2003
).
12.
K.
Lord
,
B.
Yan
,
J.
Yang
, and
S.
Guha
,
Appl. Phys. Lett.
79
,
3800
(
2001
).
13.
A.
Kikukawa
,
S.
Hosaka
, and
R.
Imura
,
Appl. Phys. Lett.
66
,
3510
(
1995
).
14.
C.-S.
Jiang
,
H. R.
Moutinho
,
D. J.
Friedman
,
J. F.
Geisz
, and
M. M.
Al-Jassim
,
J. Appl. Phys.
93
,
10035
(
2003
).
15.
C. W.
Teplin
,
E.
Iwaniczko
,
B.
To
,
H.
Moutinho
,
P.
Stradins
, and
H. M.
Branz
,
Phys. Rev. B
74
,
235428
(
2006
).
16.
T. I.
Kamins
,
Polycrystalline Silicon for Integrated Circuit Applications
(
Kluwer Academic
,
Boston
,
1997
), p.
32
.
17.
T.
Kamei
,
T.
Wada
, and
A.
Matsuda
,
Proceedings of the 28th IEEE Photovoltaic Specialists Confeerence, Anchorage, AK, 15–22 September 2000
(
IEEE
,
New York
,
2000
), p.
784
.
You do not currently have access to this content.