Amorphous chalcogenide thin film deposition can be achieved by a spin-coating technique from proper solutions of the corresponding glass. Films produced in this way exhibit certain grain texture, which is presumably related to the cluster size in solution. This paper deals with the search of such a correlation between grain size of surface morphology of as-deposited spin-coated As33S67 chalcogenide thin films and cluster size of the glass in butylamine solutions. Optical absorption spectroscopy and dynamic light scattering were employed to study optical properties and cluster size distributions in the solutions at various glass concentrations. Atomic force microscopy is used to study the surface morphology of the surface of as-deposited and thermally stabilized spin-coated films. Dynamic light scattering revealed a concentration dependence of cluster size in solution. Spectral-dependence dynamic light scattering studies showed an interesting athermal photoaggregation effect in the liquid state.

1.
D. J.
Milliron
,
S.
Raoux
,
R.
Shelby
, and
J.
Jordan-Sweet
,
Nat. Mater.
6
,
352
(
2007
).
2.
D. B.
Mitzi
,
S.
Raoux
,
A. G.
Schrott
,
M.
Copel
,
A.
Kellock
, and
J.
Jordan-Sweet
,
Chem. Mater.
18
,
6278
(
2006
).
3.
S. R.
Elliott
,
Physics of Amorphous Materials
, 2nd ed. (
Longman Scientific
,
London
,
1990
).
4.
Insulating and Semiconducting Glasses
, edited by
P.
Boolchand
(
World Scientific
,
Singapore
,
2001
).
5.
(a)
Photo-induced Metastability in Amorphous Semiconductors
, edited by
A. V.
Kolobov
(
Wiley-VCH
,
Weinheim
,
2003
);
(b)
A. V.
Kolobov
and
K.
Tanaka
, in
Handbook of Advanced Electronic and Photonic Materials and Devices
, edited by
H. S.
Nalwa
(
Academic
,
New York
,
2001
),
Photo-induced Metastability in Amorphous Semiconductors
Vol.
5
, pp.
47
90
.
6.
M.
Frumar
,
B.
Frumarova
,
T.
Wagner
, and
P.
Nemec
, [Ref. 5(a)], pp.
23
44
.
7.
(a)
G. C.
Chern
and
I.
Lauks
,
J. Appl. Phys.
53
,
6979
(
1983
);
(b)
G. C.
Chern
and
I.
Lauks
,
J. Appl. Phys.
54
,
2701
(
1983
);
(c)
G. C.
Chern
,
I.
Lauks
, and
A. R.
McGhie
,
J. Appl. Phys.
54
,
4596
(
1983
);
(d)
K. H.
Norian
,
G. C.
Chern
, and
I.
Lauks
,
J. Appl. Phys.
55
,
3795
(
1984
).
8.
(a)
E.
Hajto
,
P. J. S.
Ewen
,
R. E.
Belford
, and
A. E.
Owen
,
Thin Solid Films
200
,
229
(
1991
);
(b)
S.
Shtutina
,
M.
Klebanov
,
V.
Lyubin
,
S.
Rosenwaks
, and
V.
Volterra
,
Thin Solid Films
261
,
263
(
1995
);
(c)
T.
Kohoutek
,
T.
Wagner
,
J.
Orava
,
M.
Frumar
,
V.
Perina
,
A.
Mackova
,
V.
Hnatowitz
,
M.
Vlcek
, and
S.
Kasap
,
Vacuum
76
,
191
(
2004
).
9.
T.
Kohoutek
,
T.
Wagner
,
J.
Orava
,
M.
Krbal
,
T.
Mates
,
A.
Fejfar
,
S. O.
Kasap
, and
M.
Frumar
,
J. Non-Cryst. Solids
353
,
1437
(
2007
).
10.
D. P.
Birnie
, III
,
B. J. J.
Zelinski
,
S. P.
Marvel
,
S. M.
Melpolder
, and
R.
Roncone
,
Opt. Eng. (Bellingham)
31
,
2012
(
1992
).
11.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering
(
Wiley
,
New York
,
1976
).
12.
(a)
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
213
(
1982
);
(b)
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
229
(
1982
).
You do not currently have access to this content.