This paper presents a detailed study of structure, morphology, and magnetic properties in FePt thin films epitaxially grown on MgO(100) at intermediate temperatures (380°C). It focuses on the effects obtained by in situ annealing the FePt films after deposition. We have demonstrated that the annealing allows one to complete the ordering, thus obtaining an epitaxial L10-FePt film with large perpendicular anisotropy (up to 3×107ergcm3) and high perpendicular squareness and remanence ratio (both higher than 0.85). At the same time, we have found a peculiar morphology evolution by increasing the annealing time: the interconnected mazelike grains evolve towards interconnected dotlike grains of reduced size (down to 10nm). Due to the interconnection at the grains basis, the increase in the film perpendicular coercivity with the annealing process is moderate (up to 4.1kOe), leading to an increasing anisotropy/coercivity ratio with the annealing time. As a further step towards the understanding of the properties evolution with annealing, we have investigated the magnetic domain pattern and analyzed the domain-period dependence on the anisotropy constant in comparison with the behavior expected by the Kooy–Enz theory [C. Kooy and U. Enz, Philips Res. Rep.15, 7 (1960)]. The main magnetic properties and reduced grain size obtained after the in situ annealing are promising to realize perpendicular recording media with reduced bit size, high thermal stability, and suitable switching field.

1.
O. A.
Ivanov
,
L. V.
Solina
,
V. A.
Demshina
, and
L. M.
Magat
,
Fiz. Met. Metalloved.
35
,
81
(
1973
).
2.
A.
Cebollada
,
D.
Weller
,
J.
Sticht
,
G. R.
Harp
,
R. F. C.
Farrow
,
R. F.
Marks
,
R.
Savoy
, and
J. C.
Scott
,
Phys. Rev. B
50
,
3419
(
1994
).
3.
M. H.
Hong
,
K.
Hono
, and
M.
Watanabe
,
J. Appl. Phys.
84
,
4403
(
1998
).
4.
M. F.
Toney
,
W.-Y.
Lee
,
J. A.
Hedstrom
, and
A.
Kellock
,
J. Appl. Phys.
93
,
9902
(
2003
).
5.
Y. K.
Takahashi
,
K.
Hono
,
T.
Shima
, and
K.
Takanashi
,
J. Magn. Magn. Mater.
267
,
248
(
2003
).
6.
J. S.
Chen
,
B. C.
Lim
,
Y. F.
Ding
, and
G. M.
Chow
,
J. Magn. Magn. Mater.
303
,
309
(
2006
).
7.
R. A.
Ristau
,
K.
Barmak
,
L. H.
Lewis
,
K. R.
Coffey
, and
J. K.
Howard
,
J. Appl. Phys.
86
,
4527
(
1999
).
8.
T.
Seki
,
T.
Shima
,
K.
Takanashi
,
Y.
Takahashi
,
E.
Matsubara
, and
K.
Hono
,
Appl. Phys. Lett.
82
,
2461
(
2003
).
9.
Y. K.
Takahashi
,
M.
Ohnuma
, and
K.
Hono
,
Jpn. J. Appl. Phys., Part 2
40
,
L1367
(
2001
).
10.
T.
Seki
,
T.
Shima
,
K.
Takanashi
,
Y.
Takahashi
,
E.
Matsubara
, and
K.
Hono
,
IEEE Trans. Magn.
40
,
2522
(
2004
).
11.
T.
Shima
,
K.
Takanashi
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Lett.
81
,
1050
(
2002
).
12.
S.
Okamoto
,
N.
Kikuchi
,
O.
Kitakami
,
T.
Miyazaki
,
Y.
Shimada
, and
K.
Fukamichi
,
Phys. Rev. B
66
,
024413
(
2002
).
13.
K.
Barmak
,
J.
Kim
,
L. H.
Lewis
,
K. R.
Coffey
,
M. F.
Toney
,
A. J.
Kellock
, and
J.-U.
Thiele
,
J. Appl. Phys.
98
,
033904
(
2005
).
14.
T.
Shima
,
K.
Takanashi
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Lett.
85
,
2571
(
2004
).
15.
R. H.
Victora
and
X.
Shen
,
IEEE Trans. Magn.
41
,
537
(
2005
).
16.
D.
Suess
,
T.
Schrefl
,
R.
Dittrich
,
M.
Kirschner
,
F.
Dorfbauer
,
G.
Hrkac
, and
J.
Fidler
,
J. Magn. Magn. Mater.
290–291
,
551
(
2005
).
17.
G.
Asti
,
M.
Ghidini
,
R.
Pellicelli
,
C.
Pernechele
,
M.
Solzi
,
F.
Albertini
,
F.
Casoli
,
S.
Fabbrici
, and
L.
Pareti
,
Phys. Rev. B
73
,
094406
(
2006
).
18.
B.
Rellinghaus
,
E.
Mohn
,
L.
Schultz
,
T.
Gemming
,
M.
Acet
,
A.
Kowalik
, and
B. F.
Kock
,
IEEE Trans. Magn.
42
,
3048
(
2006
).
19.
J.
Buschbeck
,
S.
Fähler
,
M.
Weisheit
,
K.
Leistner
,
J.
McCord
,
B.
Rellinghaus
, and
L.
Schultz
,
J. Appl. Phys.
100
,
123901
(
2006
).
20.
F.
Casoli
,
F.
Albertini
,
L.
Pareti
,
S.
Fabbrici
,
L.
Nasi
,
C.
Bocchi
, and
R.
Ciprian
,
IEEE Trans. Magn.
41
,
3223
(
2005
).
21.
F.
Albertini
,
L.
Nasi
,
F.
Casoli
,
S.
Fabbrici
,
P.
Luches
,
A.
Rota
, and
S.
Valeri
,
J. Magn. Magn. Mater.
316
,
158
E
(
2007
).
22.
G. Q.
Li
,
H.
Takahoshi
,
H.
Ito
,
H.
Saito
,
S.
Ishio
,
T.
Shima
, and
K.
Takanashi
,
J. Appl. Phys.
94
,
5672
(
2003
).
23.
T.
Suzuki
,
N.
Honda
, and
K.
Ouchi
,
J. Appl. Phys.
85
,
4301
(
1999
).
24.
H.
Kanazawa
,
E.
Ahmad
,
G.
Lauhoff
, and
T.
Suzuki
,
IEEE Trans. Magn.
37
,
1274
(
2001
).
25.
J.-U.
Thiele
,
L.
Folks
,
M. F.
Toney
, and
D. K.
Weller
,
J. Appl. Phys.
84
,
5686
(
1998
).
26.
C.
Kooy
and
U.
Enz
,
Philips Res. Rep.
15
,
7
(
1960
).
27.
A.
Cebollada
,
R. F. C.
Farrow
, and
M. F.
Toney
, in
Magnetic Nanostructures
, edited by
H. S.
Nalwa
(
American Scientific
,
Valencia, CA
,
2002
), pp.
93
121
.
28.
D. E.
Laughlin
,
S.
Kumar
,
Y.
Peng
, and
A. G.
Roy
,
IEEE Trans. Magn.
41
,
719
(
2005
).
29.
J. S.
Chen
,
Y.
Xu
, and
J. P.
Wang
,
J. Appl. Phys.
93
,
1661
(
2003
).
30.
J.
Lyubina
,
O.
Gutfleisch
,
R.
Skomski
,
K.-H.
Müller
, and
L.
Schultz
,
Scr. Mater.
53
,
469
(
2005
).
31.
F. E.
Spada
,
F. T.
Parker
,
C. L.
Platt
, and
J. K.
Howard
,
J. Appl. Phys.
94
,
5123
(
2003
).
32.
M.-G.
Kim
and
S.-C.
Shin
,
J. Appl. Phys.
90
,
2211
(
2001
).
33.
Z. R.
Dai
,
S.
Sun
, and
Z. L.
Wang
,
Nano Lett.
1
,
443
(
2001
).
34.
Y. K.
Takahashi
and
K.
Hono
,
Scr. Mater.
53
,
403
(
2005
).
35.
S.
Hong
and
M. H.
Yoo
,
J. Appl. Phys.
97
,
084315
(
2005
).
36.
J.-S.
Kim
,
Y.-M.
Koo
,
B.-J.
Lee
, and
S.-R.
Lee
,
J. Appl. Phys.
99
,
053906
(
2006
).
37.
T.
Shima
,
K.
Takanashi
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Lett.
88
,
063117
(
2006
).
38.
G.
Li
,
H.
Takahoshi
,
H.
Ito
,
T.
Washiya
,
H.
Saito
,
S.
Ishio
,
T.
Shima
, and
K.
Takanashi
,
J. Magn. Magn. Mater.
287
,
219
(
2005
).
39.
T.
Shima
,
K.
Takanashi
,
Y. K.
Takahashi
,
K.
Hono
,
G. Q.
Li
, and
S.
Ishio
,
J. Appl. Phys.
99
,
033516
(
2006
).
40.
H. J. G.
Draaisma
and
W. J. M.
de Jonge
,
J. Appl. Phys.
62
,
3318
(
1987
).
41.
J. R.
Barnes
,
S. J.
O’Shea
,
M. E.
Welland
,
J.-Y.
Kim
,
J. E.
Evetts
, and
R. E.
Somekh
,
J. Appl. Phys.
76
,
2974
(
1994
).
42.
A. W.
Rushforth
,
P. C.
Main
,
B. L.
Gallagher
,
C. H.
Marrows
,
B. J.
Hickey
,
E. D.
Dahlberg
, and
P.
Earnes
,
J. Appl. Phys.
89
,
7534
(
2001
).
You do not currently have access to this content.