Anatase TiO2 films are grown on Si (100) by atomic layer deposition. Three different interlayers (Si3N4, Al2O3, and Ti-rich SiOx) between the TiO2 films and the Si substrate have been considered. The band alignment of the titanium oxide films with the silicon substrate is investigated by x-ray photoelectron spectroscopy (XPS), internal photoemission (IPE) spectroscopy, and optical absorption (OA) measurements. XPS analysis indicates that TiO2Si heterojunctions with different interlayers (ILs) have different valence-band offsets (VBOs). A VBO value of 2.56±0.09eV is obtained for the TiO2Ti-rich SiOxSi sample. Similarly, we obtain a VBO value of 2.44±0.09 and 2.73±0.10eV for the TiO2Si3N4Si and TiO2Al2O3Si samples, respectively. According to IPE and OA measurements, the band gap of the as-grown TiO2 films is 3.3±0.1eV for all the samples. Combining the XPS and IPE data, the conduction band offset values at the TiO2Si heterojunction are found to be 0.2±0.1, 0.4±0.1, and 0.5±0.1eV for the TiO2Si3N4Si, TiO2Ti-rich SiOxSi, and TiO2Al2O3Si samples, respectively. According to our experimental results, the band alignment of a TiO2 film with the underlying Si (100) substrate is clearly affected by the presence of an IL, suggesting the possibility to tune the band structure of a TiO2Si heterojunction by selecting the proper IL.

1.
P.
Fromherz
, in
Bioelectronics
, edited by
I.
Willner
and
E.
Katz
(
Wiley VCH
,
Weinheim
,
2005
), pp.
339
394
.
2.
F.
Wallrapp
and
P.
Fromherz
,
J. Appl. Phys.
99
,
114103
(
2006
).
3.
F.
Wallrapp
,
P.
Fromherz
,
G.
Scarel
,
M.
Perego
,
G.
Seguini
, and
M.
Fanciulli
(unpublished).
4.
A.
Franciosi
and
C. G.
Van de Walle
,
Surf. Sci. Rep.
25
,
1
(
1996
).
5.
P. W.
Peacock
,
K.
Xiong
,
K.
Tse
, and
J.
Robertson
,
Phys. Rev. B
73
,
075328
(
2006
).
6.
V.
Afanas’ev
,
A.
Stesmans
,
F.
Chen
,
X.
Shi
, and
S.
Campbell
,
Appl. Phys. Lett.
81
,
1053
(
2002
).
7.
V.
Afanas’ev
and
A.
Stesmans
,
Appl. Phys. Lett.
84
,
2319
(
2004
).
8.
M.
Perego
,
G.
Seguini
, and
M.
Fanciulli
,
J. Appl. Phys.
100
,
093718
(
2006
).
9.
E.
Martinez
,
O.
Renault
,
L.
Fourdrinier
,
L.
Clavelier
,
C.
Le Royer
,
C.
Licitra
,
T.
Veyron
,
J. M.
Hartmann
,
V.
Loup
,
L.
Vandroux
,
M. J.
Guittet
, and
N.
Barrett
,
Appl. Phys. Lett.
90
,
053508
(
2007
).
10.
V.
Afanas’ev
,
A.
Stesmans
,
L.
Edge
,
D.
Schlom
,
T.
Heeg
, and
J.
Schubert
,
Appl. Phys. Lett.
88
,
032104
(
2006
).
11.
Y. Y.
Mi
,
S. J.
Wang
,
J. W.
Chai
,
J. S.
Pan
,
C. H.
Huan
,
M.
Ning
, and
C. K.
Ong
,
Appl. Phys. Lett.
89
,
202107
(
2006
).
12.
J. K.
Yang
,
M. G.
Kang
, and
H. H.
Park
,
J. Appl. Phys.
96
,
4811
(
2004
).
13.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
, and
P.
Haussalo
,
Chem. Mater.
5
,
1174
(
1993
).
14.
E.
Kraut
,
R.
Grant
,
J.
Waldrop
, and
S.
Kowalczyk
,
Phys. Rev. Lett.
44
,
1620
(
1980
).
15.
E.
Kraut
,
R.
Grant
,
J.
Waldrop
, and
S.
Kowalczyk
,
Phys. Rev. B
28
,
1965
(
1983
).
16.
S.
Chambers
,
T.
Droubay
,
T.
Kaspar
, and
M.
Gutowski
,
J. Vac. Sci. Technol. B
22
,
2205
(
2004
).
17.
S. A.
Chambers
,
Y.
Liang
,
Z.
Yu
,
R.
Droopad
,
J.
Ramdani
, and
K.
Eisenbeiser
,
Appl. Phys. Lett.
77
,
1662
(
2000
).
18.
V. K.
Adamchuck
and
V. V.
Afanas’ev
,
Prog. Surf. Sci.
41
,
111
(
1992
).
19.
V. V.
Afanas’ev
,
A.
Stesmans
,
F.
Chen
,
X.
Shi
, and
S. A.
Campbell
,
Appl. Phys. Lett.
81
,
1053
(
2002
).
20.
G.
Seguini
,
E.
Bonera
,
S.
Spiga
,
G.
Scarel
, and
M.
Fanciulli
,
Appl. Phys. Lett.
85
,
5316
(
2004
).
21.
G.
Seguini
,
S.
Spiga
,
E.
Bonera
,
M.
Fanciulli
,
A. R.
Huamantinco
,
C. J.
Forst
,
C. R.
Ashman
,
P. E.
Blochl
,
A.
Dimoulas
, and
G.
Mavrou
,
Appl. Phys. Lett.
88
,
202903
(
2006
).
22.
C. C.
Fulton
,
G.
Lucovsky
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. B
20
,
1726
(
2002
).
23.
C. C.
Fulton
,
G.
Lucovsky
, and
R. J.
Nemanich
,
Appl. Phys. Lett.
84
,
580
(
2004
).
24.
S. A.
Campbell
,
D. C.
Gilmer
,
X.
Wang
,
M. T.
Hsich
,
H. S.
Kim
,
W. L.
Gladfelter
, and
J. H.
Yan
,
IEEE Trans. Electron Devices
44
,
104
(
1997
).
You do not currently have access to this content.