Natural oxidation processes of surface hydrogenated silicon nanocrystallites prepared by pulsed laser ablation under various hydrogen gas pressures are discussed by measuring the vibrational frequency of SiHn units on the surface and intensity of SiOSi stretching vibration. The surfaces of nanocrystallites are predominantly composed of SiH bonds and oxidation starts from backbonds of these bonds. The deposited nanocrystal films have a porous secondary structure which depends on the background gas pressure. The oxidation rate observed by infrared absorption measurements depended on this porous secondary structure. The oxidation process is discussed by the correlation between oxidation rate and porous structure of nanocrystal film. We found that SiO bond density increases with covering the surface of the nanocrystallites during the diffusion of oxygen-related molecules through the void spaces in the porous structure. The surface oxidation of each nanocrystallite is not homogeneous; after the coverage of easy-to-oxidize sites, oxidation continues to gradually progress at the post-coverage stage. We point out that the oxidation process at coverage and post-coverage stages result in different photoluminescence (PL) wavelengths. Adsorption of the water molecule before oxidation also affects the PL wavelength. Defect PL centers which have light emission around 600 and 400 nm are generated during the coverage and post-coverage oxidation processes, respectively.

1.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
D. J.
Lockwood
,
Ligth Emission in Silicon From Physics to Devices
,
Semiconductors and Semimetals Vol. 49
, edited by
D. J.
Lockwood
(
Academic
,
New York
,
1998
).
3.
S.
Ossicini
,
L.
Pavesi
, and
F.
Priolo
,
Light Emitting Silicon for Microphotonics
,
Springer Tracs in Modern Physics Vol. 194
(
Springer
,
New York
,
2003
).
4.
L. E.
Ramos
,
J.
Furthmuller
, and
F.
Bechstedt
,
Phys. Rev. B
70
,
033311
(
2004
).
5.
A. B.
Filonov
,
S.
Ossicini
,
F.
Bassani
, and
F. A.
Avitaya
,
Phys. Rev. B
65
,
195317
(
2002
).
6.
M. V.
Wolkin
,
J.
Jorne
,
P. M.
Fauchet
,
G.
Allan
, and
C.
Delerue
,
Phys. Rev. Lett.
82
,
197
(
1999
).
7.
S. M.
Prokes
and
W. E.
Carlos
,
J. Appl. Phys.
78
,
2671
(
1995
).
8.
L. N.
Dinh
,
L. L.
Chase
,
M.
Balooch
,
W. J.
Siekhaus
, and
F.
Wooten
,
Phys. Rev. B
54
,
5029
(
1996
).
9.
L.
Tsybeskov
,
J. V.
Vandyshev
, and
P. M.
Fauchet
,
Phys. Rev. B
49
,
7821
(
1994
).
10.
R. R.
Lowe-Webb
,
H.
Lee
,
J. B.
Ewing
,
S. R.
Collins
,
W.
Yang
, and
P. C.
Sercel
,
J. Appl. Phys.
83
,
2815
(
1998
).
11.
I.
Coulthard
,
J. W. J.
Antel
,
J. W.
Freed
,
T. K.
Sham
,
S. J.
Naftel
, and
P.
Zhang
,
Appl. Phys. Lett.
77
,
498
(
2000
).
12.
I.
Vasiliev
,
J. R.
Chelikowsky
, and
R. M.
Martin
,
Phys. Rev. B
65
,
121302
(R) (
2002
).
13.
M.
Nishida
,
Phys. Rev. B
69
,
165324
(
2004
).
14.
M. L.
Brongersma
,
A.
Polman
,
K. S.
Min
,
E.
Boer
,
T.
Tambo
, and
H. A.
Atwater
,
Appl. Phys. Lett.
72
,
2577
(
1998
).
15.
I.
Umezu
,
K.
Matsumoto
,
M.
Inada
,
T.
Makino
, and
A.
Sugimura
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1545
(
2004
).
16.
K.
Matsumoto
,
M.
Inada
,
I.
Umezu
, and
A.
Sugimura
,
Jpn. J. Appl. Phys., Part 1
44
,
8742
(
2005
).
17.
D. W.
Cooke
,
R. E.
Muenchausen
,
B. L.
Bennett
,
L. G.
Jacobsohn
, and
M.
Nastasi
,
J. Appl. Phys.
96
,
197
(
2004
).
18.
A. V.
Kabashin
,
J. -P.
Sylvestre
,
S.
Patskovsky
, and
M.
Meunier
,
J. Appl. Phys.
91
,
3248
(
2002
).
19.
Y.
Yamada
,
T.
Orii
,
I.
Umezu
,
S.
Takeyama
, and
T.
Yoshida
,
Jpn. J. Appl. Phys., Part 1
35
,
1361
(
1996
).
20.
I. A.
Movtchan
,
R. W.
Dreyfus
,
W.
Marine
,
M.
Sentis
,
M.
Autric
,
G. L.
Lay
, and
N.
Merk
,
Thin Solid Films
255
,
286
(
1995
).
21.
T.
Makimura
,
Y.
Kunii
, and
K.
Murakami
,
Jpn. J. Appl. Phys., Part 1
35
,
4780
(
1996
).
22.
T.
Makino
,
M.
Inada
,
I.
Umezu
, and
A.
Sugimura
,
J. Phys. D
38
,
3507
(
2005
).
23.
T.
Makino
,
M.
Inada
,
K.
Yoshida
,
I.
Umezu
, and
A.
Sugimura
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1391
(
2004
).
24.
R.
Okada
and
S.
Iijima
,
Appl. Phys. Lett.
58
,
1662
(
1991
).
25.
D. Q.
Yang
,
J.
Gillet
,
M.
Meunier
, and
E.
Sacher
,
J. Appl. Phys.
97
,
024303
(
2005
).
26.
G.
Lucovsky
,
Solid State Commun.
29
,
571
(
1979
).
27.
M.
Niwano
,
J.
Kageyama
,
K.
Kurita
,
K.
Kinashi
,
I.
Takahashi
, and
N.
Miyamoto
,
J. Appl. Phys.
76
,
2157
(
1994
).
28.
T.
Miura
,
M.
Niwano
,
D.
Shoji
, and
N.
Miyamoto
,
J. Appl. Phys.
79
,
4373
(
1996
).
29.
X.
Zhang
,
Y. J.
Chabal
,
S. B.
Cristman
,
E. E.
Chaban
, and
E.
Garfunkel
,
J. Vac. Sci. Technol. A
19
,
1725
(
2001
).
30.
X.
Zhang
,
E.
Garfunkel
,
Y. J.
Chabal
,
S. B.
Christman
, and
E. E.
Chaban
,
Appl. Phys. Lett.
79
,
4051
(
2001
).
31.
M. K.
Weldon
,
B. B.
Stefanov
,
K.
Raghavachari
, and
Y. J.
Chabal
,
Phys. Rev. Lett.
79
,
2851
(
1997
).
32.
D. -Q.
Yang
,
V.
Ethier
,
E.
Sacher
, and
M.
Meunier
,
J. Appl. Phys.
98
,
024310
(
2005
).
33.
N.
Suzuki
,
T.
Makino
,
Y.
Yamada
,
T.
Yoshida
, and
S.
Onari
,
Appl. Phys. Lett.
76
,
1389
(
2000
).
34.
I.
Umezu
,
A.
Sugimura
,
M.
Inada
,
T.
Makino
,
K.
Matsumoto
, and
M.
Takata
,
Phys. Rev. B
76
,
045328
(
2007
).
35.
M.
Inada
,
H.
Nakagawa
,
I.
Umezu
, and
A.
Sugimura
,
Appl. Surf. Sci.
197–198
,
666
(
2002
).
36.
M.
Inada
,
I.
Umezu
, and
A.
Sugimura
,
J. Vac. Sci. Technol. A
21
,
84
(
2003
).
37.
A. A.
Langford
,
M. L.
Fleet
,
B. P.
Nelson
,
W. A.
Lanford
, and
N.
Maley
,
Phys. Rev. B
45
,
13367
(
1992
).
38.
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
V. A.
Burrows
,
J. Vac. Sci. Technol. A
7
,
2104
(
1989
).
39.
H.
Ikeda
,
K.
Hotta
,
T.
Yamada
,
S.
Zaima
,
H.
Iwano
, and
Y.
Yasuda
,
J. Appl. Phys.
77
,
5125
(
1995
).
40.
K.
Kato
and
T.
Uda
,
Phys. Rev. B
62
,
15978
(
2000
).
41.
T.
Uchiyama
and
M.
Tsukada
,
Phys. Rev. B
53
,
7917
(
1996
).
42.
H.
Kageshima
and
K.
Shiraishi
,
Phys. Rev. Lett.
81
,
5936
(
1998
).
43.
H. I.
Liu
,
D. K.
Biegelsen
,
F. A.
Ponce
,
N. M.
Johnson
, and
R. F. W.
Pease
,
Appl. Phys. Lett.
64
,
1383
(
1994
).
44.
G.
Allan
,
C.
Delerue
, and
M.
Lannoo
,
Phys. Rev. Lett.
76
,
2961
(
1996
).
45.
A. Y.
Kobitski
,
K. S.
Zhuravlev
,
H. P.
Wagner
, and
D. R. T.
Zahn
,
Phys. Rev. B
63
,
115423
(
2001
).
46.
I.
Umezu
,
T.
Kimura
, and
A.
Sugimura
,
Physica B (Amsterdam)
376–377
,
853
(
2006
).
47.
L.
Skuja
,
Solid State Commun.
84
,
613
(
1992
).
48.
G. G.
Qin
and
Y. Q.
Jia
,
Solid State Commun.
86
,
559
(
1993
).
49.
A.
Anedda
,
G.
Bongiovanni
,
M.
Cannas
,
F.
Congiu
,
A.
Mura
, and
M.
Martini
,
J. Appl. Phys.
74
,
6993
(
1993
).
50.
M.
Kohketsu
,
K.
Awazu
,
H.
Kawazoe
, and
M.
Yamane
,
Jpn. J. Appl. Phys., Part 1
28
,
615
(
1989
).
51.
L. N.
Skuja
,
A. N.
Strelesky
, and
A. B.
Pakuvich
,
Solid State Commun.
50
,
1069
(
1984
).
52.
M.
Zhu
,
Y.
Han
,
R. B.
Wehrspohn
,
C.
Godet
, and
R.
Etemadi
,
J. Appl. Phys.
83
,
5386
(
1998
).
53.
H.
Tamura
,
M.
Ruckschloss
,
T.
Wirschem
, and
S.
Veprek
,
Appl. Phys. Lett.
65
,
1537
(
1994
).
54.
H.
Kageshima
and
K.
Shiraishi
,
Surf. Sci.
380
,
61
(
1997
).
You do not currently have access to this content.