The temperature dependence of the ferroelectric hysteresis and capacitance in PbZrO3 epitaxial films with (120)O and (001)O orientations was investigated in the 4.2400K temperature range. It was found that the films with (120)O orientation show a mixture of ferroelectric and antiferroelectric phases on the entire temperature range up to room temperature, with the ferroelectric phase more stable at low temperatures. Above room temperature the (120)O oriented films seem to behave only as an antiferroelectric material. By contrast, films with (001)O orientation show only ferroelectric behavior up to a temperature of about 60K when the single hysteresis loop splits into a double loop characteristic for antiferroelectrics. Above this temperature the (001)O oriented films show only antiferroelectric behavior up to 400K. The temperature dependence of capacitance and loss tangent clearly shows a maximum at around 16K in the case of the (001)O oriented film. This might be associated with a low temperature ferroelectric-antiferroelectric phase transition. However, this transition is not visible in the (120)O oriented films.

1.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
, (
Clarendon
,
Oxford
,
1977
).
2.
E.
Sawaguchi
,
Ferroelectrics
266
,
341
(
2002
).
3.
E.
Sawaguchi
,
G.
Shirane
, and
Y.
Takagi
,
J. Phys. Soc. Jpn.
6
,
333
(
1951
).
4.
G.
Shirane
,
E.
Sawaguchi
, and
Y.
Takagi
,
Phys. Rev.
84
,
476
(
1951
).
5.
E.
Sawaguchi
,
H.
Maniwa
, and
S.
Hoshino
,
Phys. Rev.
83,
1078
(
1951
).
6.
A. P.
deBretteville
, Jr.
,
Phys. Rev.
94
,
1125
(
1954
).
7.
E.
Sawaguchi
,
J. Phys. Soc. Jpn.
81
,
615
(
1953
).
8.
G.
Shirane
and
S.
Hoshino
,
Acta Crystallogr.
7
,
203
(
1954
).
9.
L.
Benguigui
,
J. Solid State Chem.
3
,
381
(
1971
).
10.
G.
Teisseron
and
A.
Baudry
,
Phys. Rev. B
11
,
4518
(
1975
).
11.
K.
Roledere
and
J.
Dec
,
J. Phys.: Condens. Matter
1
,
1503
(
1989
).
12.
Z.
Ujma
,
Phase Transitions
4
,
169
(
1984
).
13.
Q.
Tan
,
Z.
Xu
, and
D.
Viehland
,
J. Mater. Res.
14
,
4251
(
1999
).
14.
P.
Ayyub
,
S.
Chattopadhyay
,
R.
Pinto
, and
M. S.
Multani
,
Phys. Rev. B
57
,
R5559
(
1998
).
15.
F.
Jona
,
G.
Shirane
,
F.
Mazzi
, and
R.
Pepinsky
,
Phys. Rev.
105
,
849
(
1957
).
16.
X.
Dai
,
J.-F.
Li
, and
D.
Viehland
,
Phys. Rev. B
51
,
2651
(
1995
).
17.
I.
Vrejoiu
,
G.
Le Rhun
,
L.
Pintilie
,
D.
Hesse
,
M.
Alexe
, and
U.
Gösele
,
Adv. Mater. (Weinheim, Ger.)
18
,
1657
(
2006
).
18.
S. S. N.
Bharadwaja
and
S. B.
Krupanidhi
,
J. Appl. Phys.
88
,
2072
(
2000
).
19.
K.
Yamakawa
,
K.
Wa Gachigi
,
S.
Trolier–Mckinstry
, and
J. P.
Dougherty
,
J. Mater. Sci.
32
,
5169
(
1997
).
20.
J.
Zhai
and
H.
Chen
,
Appl. Phys. Lett.
82
,
2673
(
2003
).
21.
I.
Kanno
,
S.
Hayashi
,
M.
Kitagawa
,
R.
Takayama
, and
T.
Hirao
,
Appl. Phys. Lett.
66
,
145
(
1995
).
22.
E. M.
Alkoy
,
S.
Alkow
, and
T.
Shiosaki
,
Jpn. J. Appl. Phys., Part 1
44
,
8606
(
2005
).
23.
K.
Boldyreva
,
D.
Bao
,
G.
Le Rhun
,
L.
Pintilie
,
M.
Alexe
, and
D.
Hesse
,
J. Appl. Phys.
102
,
044111
(
2007
).
24.
O. E.
Fesenko
,
R. V.
Kolesova
, and
Yu. G.
Sindeyev
,
Ferroelectrics
20
,
177
(
1978
).
You do not currently have access to this content.