The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

1.
R.
Tkotz
,
A.
Górtler
,
J.
Christiansen
,
S.
Dóllinger
,
K.
Frank
,
F.
Heine
,
U.
Herbleb
,
S.
Insam
,
R.
Kowalewicz
,
T.
Mehr
,
A.
Polster
,
U.
Pruker
,
M.
Schlsug
, and
A.
Schwandner
,
IEEE Trans. Plasma Sci.
23
,
309
(
1995
).
2.
P.
Choi
,
H.
Chuaqui
,
J.
Lunney
,
R.
Reichle
,
A. J.
Davies
, and
K.
Mittag
,
IEEE Trans. Plasma Sci.
17
,
770
(
1989
).
3.
K.
Frank
,
E.
Boggasch
,
J.
Christiansen
,
A.
Goertler
,
W.
Hartmann
,
C.
Kozlik
,
G.
Kirkman
,
C.
Braun
,
V.
Dominic
,
M. A.
Gundersen
,
H.
Riege
, and
G.
Mechtersheimer
,
IEEE Trans. Plasma Sci.
16
,
317
(
1988
).
4.
L. C.
Pitchford
,
N.
Ouadoudi
,
J. P.
Boeuf
,
M.
Legentil
,
V.
Puech
,
J. C.
Thomaz
 Jr.
, and
M. A.
Gundersen
,
J. Appl. Phys.
78
,
77
(
1995
).
5.
M.
Gastel
,
H.
Hillmann
,
F.
Muller
, and
J.
Westheide
,
IEEE Trans. Plasma Sci.
23
,
248
(
1995
).
6.
K.
Frank
and
J.
Christiansen
,
IEEE Trans. Plasma Sci.
17
,
748
(
1989
).
7.
J.
Christiansen
, in
Physics and Applications of Pseudosparks
, edited by
M. A.
Gunderson
and
G.
Schaefer
(
Plenum
,
New York
,
1990
), p.
1
.
8.
C.
Jiang
,
A.
Kuthi
, and
M. A.
Gunderson
,
Appl. Phys. Lett.
86
,
024105
(
2005
).
9.
J. M.
Meek
and
J. D.
Craggs
,
Electrical Breakdown of Gases
(
Wiley
,
Norwich
,
1978
).
10.
A.
Zastawny
,
Nucl. Instrum. Methods Phys. Res. A
385
,
239
(
1997
).
11.
K. K.
Jain
,
B. N.
Ding
, and
M. J.
Rhee
,
IEEE Particle Accelerator Conference
,
San Francisco, CA
, 6–9 May
1991
(unpublished).
12.
K.
Frank
,
E.
Dewald
,
C.
Bickes
,
U.
Ernst
,
M.
Iberler
,
J.
Meier
,
U.
Prucker
,
A.
Rainer
,
M.
Schlaug
,
J.
Schwab
,
J.
Urban
,
W.
Weisser
, and
D. H.H.
Hoffmann
,
IEEE Trans. Plasma Sci.
27
,
1008
(
1999
).
13.
Th.
Mehr
,
H.
Arenz
,
P.
Bickel
,
J.
Christiansen
,
K.
Frank
,
A.
Görtler
,
F.
Heine
,
D.
Hofmann
,
R.
Kowalewicz
,
M.
Schlaug
, and
R.
Tkotz
,
IEEE Trans. Plasma Sci.
23
,
324
(
1995
).
14.
M.
Iberler
,
R.
Bischoff
,
K.
Frank
,
I.
Petzenhauser
,
A.
Rainer
, and
J.
Urban
,
IEEE Trans. Plasma Sci.
32
,
208
(
2004
).
15.
M.
Legentil
,
C.
Postel
,
J. C.
Thomaz
 Jr.
, and
V.
Puech
,
IEEE Trans. Plasma Sci.
23
,
330
(
1995
).
16.
Yu. D.
Korolev
,
V. G.
Geyman
,
O. B.
Frants
,
I. A.
Shemyakin
,
K.
Frank
,
Ch.
Bickes
,
U.
Ernst
,
M.
Iberler
,
J.
Urban
,
V. D.
Bochkov
,
V. M.
Dyagilev
, and
V. G.
Ushich
,
IEEE Trans. Plasma Sci.
29
,
324
(
2001
).
17.
H. K.
Dwivedi
,
J.
Urban
, and
K.
Frank
,
IEEE Trans. Plasma Sci.
30
,
1371
(
2002
).
18.
W.
Hartmann
,
V.
Dominic
,
G. F.
Kirkman
, and
M. A.
Gunderson
,
J. Appl. Phys.
65
,
4388
(
1989
).
19.
G.
Kirkman
,
W.
Hartmann
, and
M. A.
Gunderson
,
Appl. Phys. Lett.
52
,
613
(
1988
).
20.
D.
Bloess
,
I.
Kamber
,
H.
Riege
,
G.
Bittner
,
V.
Brückner
,
J.
Christiansen
,
K.
Frank
,
W.
Hartmann
,
N.
Lieser
,
Ch.
Schultheiss
,
R.
Seeböck
, and
W.
Steudtner
,
Nucl. Instrum. Methods Phys. Res.
205
,
173
(
1983
).
21.
M.
Zambra
,
J.
Moreno
,
J.
Inostroza
, and
J. C.
Araneda
,
IEEE Trans. Plasma Sci.
32
,
221
(
2004
).
22.
B.
Lin
and
Q.
Chow
,
IEEE Trans. Plasma Sci.
23
,
239
(
1995
).
23.
A.
Anders
,
S.
Anders
,
M. A.
Gundersen
, and
A. M.
Martsinovskii
,
IEEE Trans. Plasma Sci.
23
,
275
(
1995
).
24.
J. P.
Verboncoeur
,
A. B.
Langden
, and
N. T.
Gladd
,
Comput. Phys. Commun.
87
,
199
(
1995
).
26.
R. M.
Vaughan
,
IEEE Trans. Electron Devices
40
,
1963
(
1993
).
27.
J.-P.
Boeuf
and
L. C.
Pitchford
,
IEEE Trans. Plasma Sci.
19
,
286
(
1991
).
You do not currently have access to this content.