Grain boundaries play an important role in determining the electrical, mechanical, and optical properties of polycrystalline thin films. A side-disubstituted counterpart of pentacene, 6,13 bis(tri-isopropylsilylethynyl) (TIPS) pentacene, has lateral π-π packing and reasonably high solubility in a number of organic solvents. In this paper, the effects of grain boundaries on the effective hole mobility, on/off ratio, threshold voltage, and hysteresis of transistor transfer characteristics were investigated in solution-processed TIPS pentacene thin film transistors with both experiments and simulations. The effects of solvent type, concentration, substrate temperature, and evaporation rate were investigated by optical, electron, and atomic force microscopies. An apparatus for controlled solution casting was designed, fabricated, and used to make TIPS pentacene thin film transistors with more precisely controlled variations in microstructure and defect densities. First, hysteresis in the electrical characteristics was found to correlate directly with grain width WG (the crystal dimension along [12¯0]) in active layers. In addition, since TIPS pentacene crystals with larger grain width (WG>6μm) generally took a long needle shape and the ones with smaller domain sizes (WG<4μm) had a more equiaxed geometry, a sharp enhancement in the effective mobility was observed in the larger grains. In devices with active layers cast from toluene solution, the measured field-effect hole mobility for grain width WG smaller than 4μm was generally 0.01cm2/Vs, whereas mobility for films with grain width WG>6μm was typically 0.11cm2/Vs. A model of boundary-limited transport was developed and used to explain experimental data. Based on the proposed model and an energy barrier (EB) on the order of 100 meV for electrical transport across grain boundary, the effective grain-boundary mobility μGBo was estimated to be approximately 5×107cm2/Vs.

1.
J. P.
Schaffer
,
A.
Saxena
,
S. D.
Antolovich
,
T. H.
Sanders
, and
S.
Warner
,
The Science and Design of Engineering Materials
(
McGraw-Hill
,
New York
,
1999
).
2.
H.
Hilgenkamp
and
J.
Mannhart
,
Rev. Mod. Phys.
74
,
485
(
2002
).
3.
W. D.
Callister
,
Materials Science and Engineering: An Introduction
(
Wiley
,
New York
,
2003
).
4.
R. A.
Street
,
D.
Knipp
, and
A. R.
Volkel
,
Appl. Phys. Lett.
80
,
1658
(
2002
).
5.
D.
Knipp
,
R. A.
Street
,
A.
Volkel
, and
J.
Ho
,
J. Appl. Phys.
93
,
347
(
2003
).
6.
S.
Verlaak
,
V.
Arkhipov
, and
P.
Heremans
,
Appl. Phys. Lett.
82
,
745
(
2003
).
7.
A. D.
Di Carlo
,
F.
Piacenza
,
A.
Bolognesi
,
B.
Stadlober
, and
H.
Maresch
,
Appl. Phys. Lett.
86
,
263501
(
2005
).
8.
A.
Bolognesi
,
M.
Berliocchi
,
M.
Manenti
,
A. D.
Carlo
,
P.
Lugli
,
K.
Lmimouni
, and
C.
Dufour
,
IEEE Trans. Electron Devices
51
,
1997
(
2004
).
9.
F.
Cicoira
,
C.
Santato
,
F.
Dinelli
,
M.
Murgia
,
M. A.
Loi
,
F.
Biscarini
,
R.
Zamboni
,
P.
Heremans
, and
M.
Muccini
,
Adv. Funct. Mater.
15
,
375
(
2005
).
10.
R.
Bourguiga
,
G.
Horowitz
,
F.
Garnier
,
R.
Hajlaoui
,
S.
Jemai
, and
H.
Bouchriha
,
Eur. Phys. J.: Appl. Phys.
19
,
117
(
2002
).
11.
M. E.
Hajlaoui
,
F.
Garnier
,
L.
Hassine
,
F.
Kouki
, and
H.
Bouchriha
,
Synth. Met.
129
,
215
(
2002
).
12.
G.
Horowitz
,
M. E.
Hajlaoui
, and
R.
Hajlaoui
,
J. Appl. Phys.
87
,
4456
(
2000
).
13.
G.
Horowitz
and
M. E.
Hajlaoui
,
Synth. Met.
122
,
185
(
2001
).
14.
G.
Horowitz
,
Adv. Funct. Mater.
13
,
53
(
2003
).
15.
G.
Horowitz
,
Solid State Phenom.
80–81
,
3
(
2001
).
16.
G.
Horowitz
and
M. E.
Hajlaoui
,
Adv. Mater. (Weinheim, Ger.)
12
,
1046
(
2000
).
17.
V. C.
Sundar
,
J.
Zaumseil
,
V.
Podzorov
,
E.
Menard
,
R. L.
Willett
,
T.
Someya
,
M. E.
Gershenson
, and
J. A.
Rogers
,
Science
303
,
1644
(
2004
).
18.
J.
Levinson
,
F. R.
Shepherd
,
P. J.
Scanlon
,
W. D.
Westwood
,
G.
Este
, and
M.
Rider
,
J. Appl. Phys.
53
,
1193
(
1982
).
19.
A. B.
Chwang
and
C. D.
Frisbie
,
J. Appl. Phys.
90
,
1342
(
2001
).
20.
E. L.
Granstrom
and
C. D.
Frisbie
,
J. Phys. Chem. B
103
,
8842
(
1999
).
21.
T. W.
Kelley
and
C. D.
Frisbie
,
J. Phys. Chem. B
105
,
4538
(
2001
).
22.
T. W.
Kelley
,
E. L.
Granstrom
, and
C. D.
Frisbie
,
Adv. Mater. (Weinheim, Ger.)
11
,
261
(
1999
).
23.
K. P.
Puntambekar
,
P. V.
Pesavento
, and
C. D.
Frisbie
,
Appl. Phys. Lett.
83
,
5539
(
2003
).
24.
K. P.
Puntambekar
,
J.
Dong
,
G.
Haugstad
, and
C. D.
Frisbie
,
Adv. Funct. Mater.
16
,
879
(
2006
).
25.
K. C.
Dickey
,
J. E.
Anthony
, and
Y. -L.
Loo
,
Adv. Mater. (Weinheim, Ger.)
18
,
1721
(
2006
).
26.
D. J.
Mascaro
,
M. E.
Thompson
,
H. I.
Smith
, and
V.
Bulovic
,
Org. Electron.
6
,
211
(
2005
).
27.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
,
Adv. Mater. (Weinheim, Ger.)
14
,
99
(
2002
).
28.
J. E.
Anthony
,
J. S.
Brooks
,
D. L.
Eaton
, and
S. R.
Parkin
,
J. Am. Chem. Soc.
123
,
9482
(
2001
).
29.
M. M.
Payne
,
S. R.
Parkin
,
J. E.
Anthony
,
C. -C.
Kuo
, and
T. N.
Jackson
,
J. Am. Chem. Soc.
127
,
4986
(
2005
).
30.
C. D.
Sheraw
,
T. N.
Jackson
,
D. L.
Eaton
, and
J. E.
Anthony
,
Adv. Mater. (Weinheim, Ger.)
15
,
2009
(
2003
).
31.
S. K.
Park
,
C. -C.
Kuo
,
J. E.
Anthony
, and
T. N.
Jackson
,
Tech. Dig. - Int. Electron Devices Meet.
2006
,
113
.
32.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
,
Nature (London)
389
,
827
(
1997
).
33.
J.
Chen
,
C. K.
Tee
,
C.
Shaw
,
M.
Shtein
,
D. C.
Martin
, and
J. E.
Anthony
,
J. Polym. Sci., Part B: Polym. Phys.
44
,
3631
(
2006
).
34.
J.
Chen
,
J. E.
Anthony
, and
D. C.
Martin
,
J. Mater. Res.
22
,
1701
(
2007
).
35.
J.
Chen
,
J. E.
Anthony
, and
D. C.
Martin
,
J. Phys. Chem. B
110
,
16397
(
2006
).
36.
G.
Blatter
and
F.
Greuter
,
Phys. Rev. B
33
,
3952
(
1986
).
37.
R. J.
Kline
,
M. D.
McGehee
,
E. N.
Kadnikova
,
J.
Liu
, and
J. M. J.
Frechet
,
Adv. Mater. (Weinheim, Ger.)
15
,
1519
(
2003
).
38.
M.
Shtein
,
J.
Mapel
,
J. B.
Benziger
, and
S. R.
Forrest
,
Appl. Phys. Lett.
81
,
268
(
2002
).
39.
J. G.
Laquindanum
,
H. E.
Katz
,
A. J.
Lovinger
, and
A.
Dodabalapur
,
Chem. Mater.
8
,
2542
(
1996
).
40.
S. J.
Kang
,
M.
Noh
,
D. S.
Park
,
H. J.
Kim
, and
C. N.
Whang
,
J. Appl. Phys.
95
,
2293
(
2004
).
41.
Z.
Bao
,
A. J.
Lovinger
, and
A.
Dodabalapur
,
Appl. Phys. Lett.
69
,
3066
(
1996
).
42.
J.
Xue
and
S. R.
Forrest
,
Appl. Phys. Lett.
79
,
3714
(
2001
).
43.
P. V.
Necliudov
,
M. S.
Shur
,
D. J.
Gundlach
, and
T. N.
Jackson
,
Solid-State Electron.
47
,
259
(
2003
).
44.
H.
Klauk
,
G.
Schmid
,
W.
Radlik
,
W.
Weber
,
L.
Zhou
,
C. D.
Sheraw
,
J. A.
Nichols
, and
T. N.
Jackson
,
Solid-State Electron.
47
,
297
(
2003
).
45.
P. C.
Chang
,
S. E.
Molesa
,
A. R.
Murphy
,
J. M. J.
Frechet
, and
V.
Subramanian
,
IEEE Trans. Electron Devices
53
,
594
(
2006
).
46.
F.
Dinelli
,
M.
Murgia
,
F.
Biscarini
, and
D. M. D.
Leeuw
,
Synth. Met.
146
,
373
(
2004
).
47.
H. S.
Byun
,
Y. X.
Xu
, and
C. K.
Song
,
Thin Solid Films
493
,
278
(
2005
).
48.
G.
Gu
,
M. G.
Kane
,
J. E.
Doty
, and
A. H.
Firester
,
Appl. Phys. Lett.
87
,
243512
(
2005
).
49.
F. V.
Farmakis
,
J.
Brini
,
G.
Kamarinos
,
C. T.
Angelis
,
C. A.
Dimitriadis
, and
M.
Miyasaka
,
IEEE Trans. Electron Devices
48
,
701
(
2001
).
50.
D. -H.
Kim
,
I. -K.
Park
,
W. -S.
Um
, and
H. -G.
Kim
,
Jpn. J. Appl. Phys., Part 1
34
,
4862
(
1995
).
51.
Y. G.
Li
and
S. G.
Cho
,
Key Eng. Mater.
224–226
,
41
(
2002
).
52.
K.
Hayashi
,
T.
Yamamoto
,
Y.
Ikuhara
, and
T.
Sakuma
,
J. Am. Ceram. Soc.
83
,
2684
(
2000
).
53.
K.
Hayashi
,
T.
Yamamoto
,
Y.
Ikuhara
, and
T.
Sakuma
,
J. Appl. Phys.
86
,
2909
(
1999
).
54.
E.
Brzozowski
and
M. S.
Castro
,
J. Eur. Ceram. Soc.
24
,
2499
(
2004
).
55.
K.
Johnson
and
P.
Dravid
,
Microsc. Microanal.
5
,
428
(
1999
).
56.
M. B.
Park
and
N. H.
Cho
,
Defect Diffus. Forum
226–228
,
191
(
2004
).
57.
S.
Tsurekawa
,
K.
Kido
, and
T.
Watanabe
,
Philos. Mag. Lett.
85
,
41
(
2005
).
58.
Y.
Furuta
,
H.
Mizuta
,
K.
Nakazato
,
T.
Kamiya
,
Y. T.
Tan
,
Z. A. K.
Durrani
, and
K.
Taniguchi
,
Jpn. J. Appl. Phys., Part 1
41
,
2675
(
2002
).
59.
P. V.
Evans
and
S. F.
Nelson
,
J. Appl. Phys.
69
,
3605
(
1991
).
60.
H. -S.
Kong
and
C.
Lee
,
J. Appl. Phys.
78
,
6122
(
1995
).
61.
Y.
Alpern
and
J.
Shappir
,
J. Appl. Phys.
63
,
2694
(
1988
).
62.
J. L.
Baptista
and
P. Q.
Mantas
,
J. Electroceram.
4
,
215
(
2000
).
63.
F. M.
Hossain
,
J.
Nishii
,
S.
Takagi
,
A.
Ohtomo
,
T.
Fukumura
,
H.
Fujioka
,
H.
Ohno
,
H.
Koinuma
, and
M.
Kawasaki
,
J. Appl. Phys.
94
,
7768
(
2003
).
64.
I.
Shalish
,
L.
Kronik
,
G.
Segal
,
Y.
Shapira
,
S.
Zamir
,
B.
Meyler
, and
J.
Salzman
,
Phys. Rev. B
61
,
15573
(
2000
).
65.
A. M.
Mahapatro
,
N.
Sarkar
, and
S.
Ghosh
,
Appl. Phys. Lett.
88
,
162110
(
2006
).
66.
See EPAPS Document No. E-JAPIAU-103-097811 for the coexistence of isotropic and needle-shaped grains in TIPS pentacene films with grain width less than 4 microns. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
67.
J.
Jose
and
M. A.
Khadar
,
Nanostruct. Mater.
11
,
1091
(
1999
).
68.
P. V.
Necliudov
,
M. S.
Shur
,
D. J.
Gundlach
, and
T. N.
Jackson
,
J. Appl. Phys.
88
,
6594
(
2000
).
69.
J.
Chen
, Ph.D. thesis,
University of Michigan
,
2006
.

Supplementary Material

You do not currently have access to this content.