A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.

1.
G. W.
Swift
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
(
Acoustic Society of America
,
Sewickley, PA
,
2002
).
2.
R.
Radebaugh
,
K. M.
McDermott
,
G. W.
Swift
, and
R. A.
Martin
,
Proceedings of the Fourth Interagency Meeting on Cryocoolers
, Navy Report No. DTRC91/003 (
Plymouth, MA
,
1990
), p.
205
.
3.
S.
Backhaus
and
G. W.
Swift
,
J. Acoust. Soc. Am.
107
,
3148
(
2000
);
[PubMed]
S.
Backhaus
and
G. W.
Swift
,
Nature (London)
399
,
335
(
1999
).
4.
L. M.
Qiu
,
D. M.
Sun
,
W. L.
Yan
,
P.
Chen
,
Z. H.
Gan
,
X. J.
Zhang
, and
G. B.
Chen
,
Cryogenics
45
,
380
(
2005
).
5.
W.
Dai
,
E. C.
Luo
,
J. Y.
Hu
, and
H.
Ling
,
Appl. Phys. Lett.
86
,
224103
(
2005
).
6.
E. C.
Luo
,
H.
Ling
,
W.
Dai
, and
Y.
Zhang
,
Chin. Sci. Bull.
50
,
284
(
2005
).
7.
J. Y.
Hu
,
W.
Dai
, and
E. C.
Luo
Adv. Cryog. Eng.
51
,
1564
(
2006
).
8.
E. C.
Luo
,
J. Y.
Hu
, and
W.
Dai.
,
Chin. Sci. Bull.
51
,
1014
(
2006
).
9.
W.
Dai
,
E. C.
Luo
,
J. Y.
Hu
, and
H.
Ling
,
Chin. Sci. Bull.
50
,
2112
(
2005
).
10.
L. W.
Yang
and
G.
Thummes
,
Cryogenics
45
,
155
(
2004
).
11.
C.
Nguyen
,
S.
Yeckley
,
A.
Culler
,
M.
Haberb
, and
R.
Radebaugh
,
Adv. Cryog. Eng.
49
,
1703
(
2004
).
12.
J. Y.
Hu
,
E. C.
Luo
,
W.
Dai
, and
Y.
Zhou
,
Chin. Sci. Bull.
52
,
574
(
2007
).
13.
J. Y.
Hu
,
E. C.
Luo
, and
Z. H.
Wu
,
21st International Cryogenic Engineering Conference
, edited by
G.
Gistau
and
R.
Stanislau
(
Icaris Ltd.
,
Czech Republic
,
2007
), p.
493
.
14.
J. Y.
Hu
,
E. C.
Luo
,
W.
Dai
, and
Z. H.
Wu
,
14th International Cryogenic Conference
, edited by
R. G.
Ross
(
ICC Press
,
Boulder
,
2007
), p.
219
.
16.
W. C.
Ward
and
G. W.
Swift
,
J. Acoust. Soc. Am.
95
,
3671
(
1994
).
17.
J. Y.
Hu
,
E. C.
Luo
, and
W.
Dai
,
Cryogenics
45
,
523
(
2005
).
18.
G. Y.
Yu
,
E. C.
Luo
,
W.
Dai
, and
Z. H.
Wu
,
Cryogenics
47
,
132
(
2007
).
19.
J. Y.
Hu
, Ph.D thesis,
Technical Institute of Physics and Chemistry of CAS
,
2007
.
20.
J. Y.
Hu
,
E. C.
Luo
,
Z. H.
Wu
,
W.
Dai
, and
S. L.
Zhu
,
Cryogenics
47
,
287
(
2007
).
You do not currently have access to this content.