Two-dimensional electron gases (2DEGs) were formed in undoped In0.75Al0.25AsIn0.75Ga0.25AsIn0.75Al0.25As quantum wells. The optimal growth temperature for this structure is 410°C, with peak 2DEG electron mobility and density values of μ=221000cm2Vs and n=1.36×1011cm2 at 1.5K. This electron mobility is equal to the highest previously published for these undoped structures but with a factor of 2 reduction in n. This has been achieved through the use of a significantly thinner InAlAs graded buffer, which supports the theory that this is the source of the 2DEG electrons. For n>1.6×1011cm2, μ is shown to be 10% higher for transport parallel to the [011] crystal axis. This is a direct result of anisotropic surface morphology.

1.
S.
Datta
and
B.
Das
,
Appl. Phys. Lett.
56
,
665
(
1990
).
2.
M. J.
Gilbert
and
J. P.
Bird
,
Appl. Phys. Lett.
77
,
1050
(
2000
).
3.
T.
Kita
,
Y.
Sato
,
S.
Gozu
, and
S.
Yamada
,
Physica B
298
,
65
(
2001
).
4.
Y.
Sato
,
T.
Kita
,
S.
Gozu
, and
S.
Yamada
,
J. Appl. Phys.
89
,
8017
(
2001
).
5.
M.
Jakob
,
H.
Stahl
,
J.
Knoch
,
J.
Appenzeller
,
B.
Lengeler
,
H.
Hardtdegen
, and
H.
Luth
,
Appl. Phys. Lett.
76
,
1152
(
2000
).
7.
S.
Gozu
,
K.
Tsuboki
,
M.
Hayashi
,
C. L.
Hong
, and
S.
Yamada
,
J. Cryst. Growth
201
,
749
(
1999
).
8.
B. A.
Piot
,
D. K.
Maude
,
M.
Henini
,
Z. R.
Wasilewski
,
K. J.
Friedland
,
R.
Hey
,
K. H.
Ploog
,
A. I.
Toropov
,
R.
Airey
, and
G.
Hill
,
Phys. Rev. B
72
,
245325
(
2005
).
9.
F.
Capotondi
,
G.
Biasiol
,
I.
Vobornik
,
L.
Sorba
,
F.
Giazotto
,
A.
Cavallini
, and
B.
Fraboni
,
J. Vac. Sci. Technol. B
22
,
702
(
2004
).
10.
V.
Drouot
,
M.
Gendry
,
C.
Santinelli
,
P.
Viktorovitch
,
G.
Hollinger
,
S.
Elleuch
, and
J. L.
Pelouard
,
J. Appl. Phys.
77
,
1810
(
1995
).
11.
I.
Farrer
,
J. J.
Harris
,
R.
Thomson
,
D.
Barlett
,
C. A.
Taylor
, and
D. A.
Ritchie
,
J. Cryst. Growth
301
,
88
(
2007
).
12.
A.
Bosacchi
,
A. C.
De Riccardis
,
P.
Frigeri
,
S.
Franchi
,
C.
Ferrari
,
S.
Gennari
,
L.
Lazzarini
,
L.
Nasi
,
G.
Salviati
,
A. V.
Drigo
, and
F.
Romanato
,
J. Cryst. Growth
175/176
,
1009
(
1997
).
13.
A.
Madhukar
,
T. C.
Lee
,
M. Y.
Yen
,
P.
Chen
,
J. Y.
Kim
,
S. V.
Ghaisas
, and
P. G.
Newman
,
Appl. Phys. Lett.
46
,
1148
(
1985
).
14.
D.
Bimberg
,
D.
Mars
,
J. N.
Miller
,
R.
Bauer
, and
D.
Oertel
,
J. Vac. Sci. Technol. B
4
,
1014
(
1986
).
15.
K.
Kajiyama
,
Y.
Mizushim
, and
S.
Sakata
,
Appl. Phys. Lett.
23
,
458
(
1973
).
16.
S. M.
Wang
,
C.
Karlsson
,
N.
Rorsman
,
M.
Bergh
,
E.
Olsson
,
T. G.
Andersson
, and
H.
Zirath
,
J. Cryst. Growth
175/176
,
1016
(
1997
).
17.
F.
Capotondi
,
G.
Biasiol
,
D.
Ercolani
, and
L.
Sorba
,
J. Cryst. Growth
278
,
538
(
2005
).
18.
M.
Tanaka
,
T.
Noda
, and
H.
Sakaki
,
Mater. Sci. Eng., B
14
,
304
(
1992
).
19.
S.
Mendach
,
C. M.
Hu
,
Ch.
Heyn
,
S.
Schnüll
,
H. P.
Oepen
,
R.
Anton
, and
W.
Hansen
,
Physica E (Amsterdam)
13
,
1204
(
2002
).
20.
A.
Richter
,
M.
Koch
,
T.
Matsuyama
,
C.
Heyn
, and
U.
Merkt
,
Appl. Phys. Lett.
77
,
3227
(
2000
).
21.
R. H.
Wang
,
A.
Stintz
,
P. M.
Varangis
,
T. C.
Newell
,
H.
Li
,
K. J.
Malloy
, and
L. F.
Lester
,
IEEE Photonics Technol. Lett.
13
,
767
(
2001
).
You do not currently have access to this content.