III∕V semiconductors containing dilute amounts of nitrogen are metastable and need to be thermally treated after growth to optimize optoelectronic properties. The influence of thermal annealing on the nitrogen depth profile in metal organic vapor phase epitaxygrown Ga(NAs)GaAs as well as (GaIn)(NAs)GaAs heterostructures is examined on a nanometer scale by combining several high resolution transmission electron microscopy techniques, also with Rutherford backscattering spectrometry. Annealing conditions, which are optimized for quaternary alloys with respect to photoluminescence intensity, do not result in element redistribution for the In containing material. Contrary to the quaternary material, the result of annealing the ternary Ga(NAs) is a pronounced pileup of the nitrogen profile without any out diffusion of nitrogen. These findings have important influence on device structures, which often contain Ga(NAs) barriers for strain-compensation purposes together with (GaIn)(NAs) active regions. In the light of metastability considerations for the ternary and quaternary alloy, one can conclude that the In contained in the quaternary material stabilizes the material and suppresses phase separation. Consequently (GaIn)(NAs) is more stable than its ternary counterpart Ga(NAs).

1.
S. H.
Wei
and
A.
Zunger
,
Phys. Rev. Lett.
76
,
664
(
1996
).
2.
L.
Bellaiche
,
Appl. Phys. Lett.
75
,
2578
(
1999
).
3.
S. R.
Kurtz
,
D.
Myers
, and
J. M.
Olson
,
Proceedings of the 26th IEEE Photovoltaic Specialists Conference
, IEEE,
New York, Anaheim
,
1997
, p.
875
.
4.
K.
Volz
,
A. K.
Schaper
,
A.
Hasse
,
T.
Weirich
,
F.
Höhnsdorf
,
J.
Koch
, and
W.
Stolz
,
Mater. Res. Soc. Symp. Proc.
619
,
291
(
2000
).
5.
P. J.
Klar
and
K.
Volz
,
J. Phys.: Condens. Matter
16
,
S3053
(
2004
).
6.
K.
Hantke
,
J. D.
Heber
,
S.
Chatterjee
,
P. J.
Klar
,
K.
Volz
,
W.
Stolz
,
W. W.
Rühle
,
A.
Polimeni
, and
M.
Capizzi
,
Appl. Phys. Lett.
87
,
252111
(
2005
).
7.
M.
Albrecht
,
V.
Grillo
,
T.
Remmle
,
H. P.
Strunk
,
A.
Yu Egorov
,
G. H.
Dumitras
,
H.
Riechert
,
A.
Kaschner
,
R.
Heitz
, and
A.
Hoffmann
,
Appl. Phys. Lett.
81
,
2719
(
2002
).
8.
D.
Litvinov
,
D.
Gerthsen
,
A.
Rosenauer
,
M.
Hetterich
,
A.
Grau
,
Ph.
Gilet
, and
L.
Grenouillet
,
Appl. Phys. Lett.
85
,
3743
(
2004
).
9.
K.
Volz
,
J.
Koch
,
F.
Höhnsdorf
,
B.
Kundert
, and
W.
Stolz
, “
MOVPE growth conditions of dilute nitride III/V semiconductors using all liquid metalorganic precursors
,”
J. Cryst. Growth
(submitted).
10.
P. J.
Klar
,
H.
Grüning
,
J.
Koch
,
S.
Schäfer
,
K.
Volz
,
W.
Stolz
,
W.
Heimbrodt
,
A. M. K.
Saadi
,
A.
Lindsay
, and
E. P.
O’Reilly
,
Phys. Rev. B
64
,
161203
(R) (
2000
).
11.
K.
Volz
,
J.
Koch
,
B.
Kunert
,
I.
Nemeth
, and
W.
Stolz
,
J. Cryst. Growth
298
,
126
(
2007
).
12.
L. R.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
9
,
344
(
1985
).
13.
T.
Torunski
,
K.
Volz
,
O.
Rubel
, and
W.
Stolz
, “
Optimisation of TEM sample preparation of dilute N-containing III/V semiconductor heterostructures by AFM on TEM samples and FE simulation of the sample relaxation geometry
,”
Ultramicroscopy
(submitted).
14.
A.
Rosenauer
,
U.
Fischer
, and
D.
Gerthsen
,
Ultramicroscopy
72
,
121
(
1998
).
15.
K.
Volz
,
T.
Torunski
,
O.
Rubel
,
S. D.
Baranovskii
, and
W.
Stolz
,
Appl. Phys. Lett.
88
(
8
)
081910
(
2006
).
17.
T.
Torunski
,
W.
Stolz
, and
K.
Volz
(unpublished).
18.
S. G.
Spruytte
,
C. W.
Coldren
,
J. S.
Harris
,
W.
Wampler
,
P.
Krispin
,
K.
Ploog
, and
M. C.
Larson
,
J. Appl. Phys.
89
,
4401
(
2001
).
19.
I.
Vurgaftman
,
J. R.
Meyer
, and
L.-R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
20.
O.
Rubel
,
K.
Volz
,
T.
Torunski
,
S. D.
Baranovskii
,
F.
Grosse
, and
W.
Stolz
,
Appl. Phys. Lett.
85
,
5908
(
2004
).
21.
K.
Volz
,
T.
Torunski
,
O.
Rubel
, and
W.
Stolz
, “
Direct structural proof of N-III binding in (GaIn)(NAs) before and after annealing
,”
Phys. Rev. B
(submitted).
You do not currently have access to this content.