Quantitative modeling of the performance of a single and multijunction p(InGaAs)-i(superlattice)-n(InGaAs) device lattice matched to InP utilizing a GaAsNInAsN superlattice structure is performed, and the results are compared quantitatively with the bulk metamorphic InGaAs counterpart devices. Optimized band gaps of the subcells of multijunction device are estimated by finding the optimal current to provide the maximum power through the series-connected double, triple, and quadruple junction cells for 1350K blackbody radiation as an incident flux. The output power-density of the four junction superlattice device is shown to be 1.8Wcm2, for the fixed 0.74eV first cell band gap. Lattice matching to InP substrate and the availability of various band gaps from the GaAsNInAsN structure are emphasized for the use in multijunction thermophotovoltaic device producing higher output power densities in comparison to the bulk InGaAs based devices.

1.
S. L.
Murray
,
F. D.
Newman
,
C. S.
Murray
,
D. M.
Wilt
,
M. W.
Wanlass
,
P.
Ahrenkiel
,
R.
Messham
, and
R.-R.
Siergiej
,
Semicond. Sci. Technol.
18
,
S202
(
2003
).
2.
M. W.
Wanlass
 et al.,
AIP Conf. Proc.
460
,
132
(
1999
).
3.
R. R.
Siergiej
,
S.
Sinharoy
,
T.
Valko
,
R. J.
Wehrer
,
B.
Wernsman
,
S. D.
Link
,
R. W.
Schultz
, and
R. L.
Messham
,
AIP Conf. Proc.
738
,
480
(
2004
).
4.
B.
Wernsman
 et al.,
IEEE Trans. Electron Devices
51
,
512
(
2004
).
5.
M.
Weyers
,
M.
Sato
, and
H.
Ando
,
Jpn. J. Appl. Phys., Part 2
31
,
L853
(
1992
).
6.
J. N.
Baillargeon
,
K. Y.
Cheng
,
G. E.
Hofler
,
P. J.
Pearah
, and
K. C.
Hsieh
,
Appl. Phys. Lett.
60
,
2540
(
1992
).
7.
M.
Kondow
,
K.
Uomi
,
A.
Niwa
,
T.
Kitatani
,
S.
Watahiki
, and
Y.
Yazawa
,
Jpn. J. Appl. Phys., Part 2
35
,
1273
(
1996
).
8.
S. R.
Kurtz
,
A. A.
Allerman
,
E. D.
Jones
,
J. M.
Gee
,
J. J.
Banas
, and
B. E.
Hammons
,
Appl. Phys. Lett.
74
,
729
(
1999
).
9.
A.
Wagner
 et al.,
Appl. Phys. Lett.
76
,
271
(
2000
).
10.
E.-M.
Pavelescu
,
C. S.
Peng
,
T.
Jouhti
,
J.
Konttinen
,
W.
Li
,
M.
Pessa
,
M.
Dumitrescu
, and
S.
Spanulescu
,
Appl. Phys. Lett.
80
,
3054
(
2002
).
11.
W.
Li
,
T.
Jouhti
,
C. S.
Peng
,
J.
Konttinen
,
P.
Laukkanen
,
E.-M.
Pavelescu
,
M.
Dumitrescu
, and
M.
Pessa
,
Appl. Phys. Lett.
79
,
3386
(
2001
).
12.
L.
Bhusal
,
A.
Alemu
, and
A.
Freundlich
,
Phys. Rev. B
72
,
073309
(
2005
).
13.
L.
Bhusal
,
A.
Alemu
, and
A.
Freundlich
,
Nanotechnology
15
,
S245
(
2004
).
14.
L.
Bhusal
and
A.
Freundlich
,
Phys. Rev. B
75
,
073101
(
2007
).
15.
L.
Bhusal
,
A.
Alemu
, and
A.
Freundlich
,
Proceedings of the 31st IEEE Photovoltaic specialists Conference
(IEEE Cat. No. 05CH37608, ISBN: 07803–8707–4), pp.
133
(
2005
).
16.
J. M.
Olson
,
D. J.
Friedman
, and
S.
Kurtz
, in
Handbook of Photovoltaic Science and Engineering
edited by
A.
Luque
and
S.
Hegedus
, (
Wiley
,
New York
,
2003
), chap. 9.
17.
J.
Nelson
,
The Physics of Solar Cells
(
Imperial College Press
,
London
,
2003
), chap. 4.
18.
L. M.
Fraas
,
J. E.
Avery
,
H. X.
Huang
, and
R. U.
Martinelli
,
Semicond. Sci. Technol.
18
,
S165
(
2003
).
19.
K.
Emery
,
Semicond. Sci. Technol.
18
,
S228
(
2003
).
20.
R. G.
Mahorter
,
B.
Wernsman
,
R. M.
Thomas
, and
R. R.
Siergiej
,
Semicond. Sci. Technol.
18
,
S232
(
2003
).
21.
M. W.
Wanlass
and
D. S.
Albin
,
AIP Conf. Proc.
738
,
462
(
2004
).
You do not currently have access to this content.