We study the electron energy spectrum and the Debye screening length (DSL) for III–V, ternary, and quaternary materials in the presence of light waves, whose unperturbed energy band structures are defined by the three-band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found taking n-InAs, n-InSb, n-Hg1xCdxTe, and n-In1xGaxAsyP1y lattice matched to InP, as examples that the DSL decreases with the increase in electron concentration, intensity, and wavelength, respectively in various manners. The strong dependence of the DSL on both light intensity and wavelength reflects the direct signature of light waves which is in contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band structure dependent and is significantly influenced by the presence of the different energy band constants. The classical DSL equation in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. We have also suggested an experimental method of determining the DSL in degenerate materials having arbitrary dispersion laws.

1.
P. T.
Landsberg
,
Eur. J. Phys.
2
,
213
(
1981
).
2.
R. B.
Dingle
,
Philos. Mag.
46
,
813
(
1955
);
D.
Redfield
and
M. A.
Afromowitz
,
Philos. Mag.
19
,
831
(
1969
);
H. C.
Casey
and
F.
Stern
,
J. Appl. Phys.
47
,
631
(
1976
).
3.
4.
E. O.
Kane
,
Solid-State Electron.
28
,
3
(
1985
);
W.
Zawadzki
, in
Handbook on Semiconductors
, edited by
W.
Paul
(
North Holland
,
New York
,
1982
), Vol.
1
, p.
715
.
5.
M.
Mondal
and
K. P.
Ghatak
,
Phys. Lett.
102A
,
54
(
1984
).
6.
P. K.
Chakraborty
,
G. C.
Datta
, and
K. P.
Ghatak
,
Phys. Scr.
68
,
368
(
2003
).
7.
A. N.
Chakravarti
and
D.
Mukherjee
,
Phys. Lett.
53A
,
403
(
1975
).
8.
B.
Mitra
,
D. K.
Basu
,
B.
Nag
, and
K. P.
Ghatak
,
Nonlinear Opt.
17
,
171
(
1997
).
9.
M.
Mondal
and
K. P.
Ghatak
,
Phys. Status Solidi B
135
,
239
(
1986
).
10.
A. N.
Chakravarti
and
S.
Swaminathan
,
Phys. Status Solidi A
23
,
K191
(
1974
);
A. N.
Chakravarti
,
Phys. Status Solidi A
25
,
K105
(
1974
).
11.
A. N.
Chakravarti
,
K. P.
Ghatak
,
K. K.
Ghosh
, and
A.
Dhar
,
Phys. Status Solidi B
103
,
K55
(
1981
).
12.
T.
Ando
,
A. H.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
);
P. K.
Basu
,
Optical Processes in Semiconductors
(
Oxford University Press
,
New York
,
2001
).
13.
T. E.
Bell
,
IEEE Spectrum
20
,
38
(
1983
).
14.
R. C.
Alferness
,
C. H.
Joyner
,
M. D.
Divino
,
M. J. R.
Martyak
, and
L. L.
Buhl
,
Appl. Phys. Lett.
49
,
125
(
1986
).
15.
J.
Strait
and
A. M.
Glass
,
Appl. Opt.
25
,
338
(
1986
).
16.
T. L.
Koch
,
E. G.
Burkhardt
,
F. G.
Starz
,
T. J.
Bridges
, and
T.
Sizer
,
IEEE J. Quantum Electron.
23
,
889
(
1987
).
17.
P. Y.
Lu
,
C. H.
Wung
,
C. M.
Williams
,
S. N. G.
Chu
, and
C. M.
Stiles
,
Appl. Phys. Lett.
49
,
1372
(
1986
).
18.
N. R.
Taskar
,
I. B.
Bhat
,
K. K.
Prat
,
D.
Terry
,
H.
Ehasani
, and
S. K.
Ghandhi
,
J. Vac. Sci. Technol. A
7
,
281
(
1989
).
19.
F.
Koch
,
Springer Ser. Solid State Sci.
53
,
20
(
1984
).
20.
L. R.
Tomasetta
,
H. D.
Law
,
R. C.
Eden
,
I.
Reyhimy
, and
K.
Nakano
,
IEEE J. Quantum Electron.
14
,
800
(
1978
).
21.
T.
Yamamoto
,
K.
Sakai
,
S.
Akiba
, and
Y.
Suematsu
,
IEEE J. Quantum Electron.
14
,
95
(
1978
).
22.
T. P.
Pearsall
,
B. I.
Miller
, and
R. J.
Capik
,
Appl. Phys. Lett.
28
,
499
(
1976
).
23.
M. A.
Washington
,
R. E.
Nahory
,
M. A.
Pollack
, and
E. D.
Beeke
,
Appl. Phys. Lett.
33
,
854
(
1978
).
24.
M. I.
Timmons
,
S. M.
Bedair
,
R. J.
Markunas
, and
J. A.
Hutchby
,
Proceedings of the 16th IEEE Photovoltaic Specialist Conference
(
IEEE
,
San Diego, CA
,
1982
), p.
666
.
25.
K.
Seeger
,
Semiconductor Physics
, 7th ed. (
Springer
,
Berlin
,
2006
).
26.
B. R.
Nag
,
Physics of Quantum Well Devices
(
Kluwer Academic
,
Dordrecht
,
2000
).
27.
R. K.
Pathria
,
Statistical Mechanics
, 2nd ed. (
Butterworth-Heinmann
,
Oxford
,
1996
).
28.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1965
).
29.
K. P.
Ghatak
and
B.
Mitra
,
Phys. Scr.
42
,
103
(
1990
).
30.
B. R.
Nag
,
Electron Transport in Compound Semiconductors
(
Springer
,
Berlin
,
1980
).
B. M.
Askerov
,
N. F.
Gashimzade
, and
M. M.
Panakhov
,
Sov. Phys. Solid State
29
,
435
(
1987
);
S. P.
Zelenin
,
S. A.
Kondratev
, and
A. I.
Kuchma
,
Sov. Phys. Semicond.
16
,
355
(
1982
);
A. V.
Germanenko
and
G. M.
Minkov
,
Phys. Status Solidi B
184
,
9
(
1994
);
B.
Mitra
and
K. P.
Ghatak
,
Phys. Lett.
141
,
81
(
1989
).
32.
I. M.
Tsidilkovskii
,
Band Structures of Semiconductors
(
Pergamon
,
London
,
1982
).
33.
O.
Madelung
,
Semiconductors Data Handbook
, 3rd ed. (
Springer
,
New York
,
2004
).
34.
J. N.
Schulman
and
Y. C.
Chang
,
Phys. Rev. B
24
,
4445
(
1981
).
35.
R.
Dornhaus
and
G.
Nimtz
,
Springer Tracts in Modern Physics
(
Springer
,
Berlin
,
1976
), Vol.
78
, p.
1
.
36.
V. A.
Sredin
,
G.
Suvitskii
,
Y. V.
Danilyuk
,
M. V.
Miliyanchuk
, and
I. V.
Petrovich
,
Sov. Phys. Semicond.
15
,
249
(
1981
).
37.
S. M.
Kelso
,
D. E.
Aspnes
,
M. A.
Pollack
, and
R. E.
Nahory
,
Phys. Rev. B
26
,
6669
(
1982
).
You do not currently have access to this content.